
 1

Legacy Connectivity notes.

General.
Legacy connectivity refers to how Java components interact with a legacy system.
Typical properties of a legacy system are :

• developed in another programming language
• runs in an environment that doesn’t support Java
• limited connectivity – e.g. a mainframe that only supports physical connections

Connectivity Options.
Generally, components can interact with software/services on a legacy system in the following ways :

• in-process – e.g. independent software processes collaborating
• out-of-process (physical connection) – e.g. serial IO over local cable / leased-line
• out-of-process (virtual connection) – e.g. over the network; serial IO over dialup; etc.
• out-of-process (broker) – e.g. via a middle-man such as an ORB, MQ, etc.

Sample Scenarios.

• XML News feed.
News stories are stored in a MS-SQL server database. Servlets/JSPs (or the Java XML pack) and
JDBC are used to render the stories as XML.

• Off-board server.
A Java Socket server is produced to enable secure remote access to a mainframe by forwarding SSL
requests sent on sockets to serial connections on the mainframe. Responses are transmitted back to
the client via SSL. N.B. this architecture would also be appropriate if “screen scraping” was the
only connectivity option available.

• Order processing.

A component manufacturer wishes to sell it’s products via a website. The existing order fulfilment
system uses IBM MQ Series. Servlets/JSPs and JMS are used to produce an order request message
from the website. The fulfilment system picks up website orders by consuming website order
requests. When the order has been completed, the order fulfilment system produce an “order
complete” event and publishes it to the messaging system. A MessageDrivenBean subscribes to the
“order complete” event and notifies the user via email using JavaMail.

• Component reseller.

An in-house CORBA development team require a complex content management system. An off-
the-shelf system is available which uses EJB. As EJB uses JNDI and RMI-IIOP, the in-house team
are able to integrate the content management system with their CORBA components.

• Installation program.

A Java product has a platform specific installation program written in another programming
language. E.g. a Windows specific installer “sniffs” the configuration details from the Windows
registry and writes it to file; the Java product picks up the configuration on first run and configures
the Java product accordingly.

• Credit card authorisation.

A Java utility class authorizes credit cards via a JNI wrapper to a platform specific X25 IO card.

• Single sign-on.
An organisation uses a directory product to store all relevant user details. The organisation insists
that any web application must use the directory for authentication. The website developers use
Servlets and JNDI to delegate the authorisation to the directory product.

Legacy Connectivity Notes 28/03/2002

 2

Integration Options.
Low-level integration
Description Pros / Cons
Custom protocols
(over Java Sockets / Communications API)

Pros: easy to develop; works well
Cons: Java IO performance; impedance mismatch with
Java binary streams and Java character encoding

File IO to a common specification
(files are “local” - on the same machine or mapped
network drive)

Pros: simple and quick to develop
Cons: clunky

Custom protocols
(over HTTP, a.k.a. HTTP tunnelling)

Pros: simple and quick to develop
Cons: stateless; non-transactional

Screen scraping
(over Java Sockets / Communication API)

Pros: gain online access to mainframe
Cons: extremely brittle, UI change == interface failure

Custom bridge.
Description Pros / Cons
Java wrapper
(e.g. Java socket server to mainframe serial IO; Java
RMI with JNI wrapper)

Pros: opens up access to other Java components
Cons: requires an experienced developer; tedious coding

Windows bridge
(e.g. MS Java SDK, Jawin)

Pros: opens up Windows functionality
Cons: non-portable code

Protocol bridge
(e.g. COM/CORBA bridge)

Pros: provides remote access to existing Windows code
Cons: performance; won’t necessarily pass through
firewalls so only suitable for intranet use

Java standard protocols / APIs (9 available).
Description Pros / Cons
JDBC (Java Database Connectivity) Pros: allows generic access to databases from any vendor
JNI (Java Native Interface) Pros: enables a Java wrapper to be layered around platform

specific code
Cons: clunky; non-portable code

Java Servlets / JSPs (Java Server Pages) Pros: enables fast and easy development of services for
HTTP based clients

JMS (Java Message Service) Pros: messaging systems are available on a whole host of
legacy platforms and JMS enables access to these from Java

RMI-IIOP / Java IDL
(use RMI-IIOP to program to an RMI interface but
allow access by CORBA clients; use IDL if your focus
is CORBA with Java)

Pros: enables Java/EJB and CORBA to interoperate
Cons: RMI-IIOP loses some of the normal features of RMI
(e.g. stub download, distributed garbage collection)

JNDI (Java Naming and Directory Interface) Pros: provides generic access to a host of naming/directory
services (e.g. LDAP, COS Naming, Novell, DNS, file
system, Windows registry)

Java XML Pack Pros: provides an XML toolkit to enable enhanced
productivity

JCA (J2EE Connector Architecture) Pros: provides generic access to any EIS component
Cons: early days

JDO (Java Data Objects) Pros: transparent object persistence
Cons: early days

Open standards.
Description Pros / Cons
IIOP (Internet Inter-ORB Protocol). Pros: enables components written in other languages / on

different platforms to interoperate
Cons: doesn’t go through firewalls

SOAP (Simple Object Access Protocol) / XML Pros: similar to IIOP but uses XML over HTTP so does go
through firewalls
Cons: large overhead; uses non-transactional protocol for
transport

	Structured bookmarks
	Low-level integration

