
 1

I18N notes.

General.
Internationalisation.
An application with support for Internationalisation

• a.k.a. I18N
• can be adapted to other languages / regions
• process is quick and easily
• doesn’t require engineering / code changes to add support for another language / region

(dependencies are stored externally)

Localisation.

• a.k.a. L10N
• addition of language dependent components
• translation of text, etc.

Considerations for I18N applications.
Identification of culturally dependent data.

• common text output (text, dates, times, currency, numbers)
• other text output (measurements, phone numbers, postcodes, titles)
• GUI items (labels, buttons, menus, etc.)
• media (graphics, sounds, icons)

Translation.
Translatable text should be isolated/externalised from the app into ResourceBundles
Compound messages (i.e. those containing several culturally dependent items that may be rendered in a
culturally dependent order) must be externalised also.

Java support.
Java provides support for locale specific rendering of numbers, currency, dates, times – use these for
rendering culturally dependent data in a local specific manner.

Comparison.
String and characters must be compared using locale-aware functions – e.g. Character.isLetter (‘A’),
Collator.compare (s1, s2)

Unicode.
Java uses Unicode to represent characters / strings.
If characters / strings are imported into Java they must be converted to Unicode.
If characters / strings are exported from Java they must be written in the required external representation.

Examples :

• String s = new String (utfBytes, “UTF8”)
• byte [] bytes = s.getBytes (“UTF8”)
• InputStreamReader isr = new InputStreamReader (fis, "UTF8");
• Writer out = new OutputStreamWriter (fos, "UTF8");

I18N Notes 28/03/2002

 2

Java I18N classes.
java.util.Locale

• combination of language and country – e.g. locale = new Locale("en", "GB");
• locale-aware classes can be locale instance based but otherwise default to the JVM locale
• can also construct with a variant – e.g. locale = new Locale("en", "GB", “UNIX”);

java.util.ResourceBundle
• acts as a container for locale specific properties
• ResourceBundle.getBundle (NAME, LOCALE) will scan for a class or property file matching

NAME_LANGUAGE-CODE_COUNTRY-CODE (e.g. Test_en_GB.class or Test_en_GB.properties)
• ResourceBundle accessors – getString (NAME), getObject (NAME)
• two subclasses available – PropertyResourceBundle and ListResourceBundle
• PropertyResourceBundle (dependencies defined as Strings in a property file)
• ListResourceBundle (dependencies defined as Objects in a subclass of ListResourceBundle)

java.text.NumberFormat

• Provides support for parsing/formatting numbers, currency and percentages in a locale-specific
manner using pre-defined patterns

• NumberFormat.getNumberInstance (LOCALE).format (NUM)
• NumberFormat.getCurrencyInstance (LOCALE).format (NUM)
• NumberFormat.getPercentageInstance (LOCALE).format (NUM)

java.text.DecimalFormat

• Provides support for custom parsing/formatting of numbers using format patterns
• ‘#’ is used to specify digits, ‘,’ for grouping and ‘.’ for decimal points
• ‘0’ is used to specify digits with leading zeros
• “123456.789” with pattern of “0000,###.## “ results in “0123,456.79”
• output symbols can be changed – e.g. ‘.’ can be rendered as any requested character

java.text.DateFormat

• Provides support for parsing/formatting dates and times in a locale-specific manner using pre-
defined patterns. Len of output can be controlled – e.g. DEFAULT, SHORT, MEDIUM, LONG, FULL

• DateFormat.getDateInstance (DateFormat.DEFAULT, LOCALE).format (DATE)
• DateFormat.getTimeInstance (DateFormat.DEFAULT, LOCALE).format (DATE)
• df.getDateTimeInstance (DateFormat.DEFAULT, DateFormat.DEFAULT, LOCALE).format (DATE)

java.text.SimpleDateFormat

• Provides support for custom parsing/formatting of dates/times using format patterns
• E.g. pattern “dd/MM/yy HH:mm:ss” results in “06/03/02 02:06:30”
• for correct rendering of dates and times, use locale + pattern (pattern on it’s own could leads to

inconsistent formatting in other languages)
• date symbols can be changed (e.g. “Mon” can be changed to “MON”)

java.text.MessageFormat

• provides support for template based rendering in a locale-specific manner using a pattern string and
an array of arguments – similar to placeholders in SQL PreparedStatement

java.text.BreakIterator

• provides support for identifying breaks (by character, word, sentence or line) in text in a locale-
specific manner

• getCharacterInstance (), getWordInstance (), getSentenceInstance (), getLineInstance ()
• BreakIterator.first (), BreakIterator.next (), while (BreakIterator.next () != BreakIterator.DONE)

