4 sun

microsystems

Sun Microsystems

JSR 220: Enterprise JavaBeaffsVersion 3.0

Java Persistence API

EJB 3.0 Expert Group

Specification Lead:
Linda DeMichiel, Sun Microsystems
Michael Keith, Oracle Corporation

Please send comments to: ejb3-spec-feedback@sun.com

Version 3.0, Final Release
May 2, 200

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

Specification: JSR-000220 Enterprise JavaBeans v.3.0 ("Specification")
Version: 3.0

Status: Final Release

Release: 8 May 2006

Copyright 2006 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. _License for Evaluation Purposes_. Sun hereby grants you a fully-paid, non-exclusive, non-transfer-
able, worldwide, limited license (without the right to sublicense), under Sun’s applicable intellectual
property rights to view, download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an implementation of the Spec-
ification, provided that such applications do not themselves implement any portion(s) of the Specifica-
tion, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that such ex-
cerpts do not in the aggregate constitute a significant portion of the Specification.

2. _License for the Distribution of Compliant Implementations_. Sun also grants you a perpetual, non-
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to
sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent
rights it may have covering the Specification to create and/or distribute an Independent Implementation
of the Specification that: (a) fully implements the Specification including all its required interfaces and
functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the Licensor
Name Space other than those required/authorized by the Specification or Specifications being imple-
mented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation™). In addition, the
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose (including, for example, modifying the Specification, other than to the
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or
interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted here-
under. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions_. You need not include limitations (a)-(c) from the previous paragraph or
any other particular "pass through" requirements in any license You grant concerning the use of your In-
dependent Implementation or products derived from it. However, except with respect to Independent Im-
plementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims con-
cerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses_.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that
would be infringed by all technically feasible implementations of the Specification, such license is con-
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights

2 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

which are or would be infringed by all technically feasible implementations of the Specification to de-
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph
2, whether or not their infringement can be avoided in a technically feasible manner when implementing
the Specification, such license shall terminate with respect to such claims if You initiate a claim against
Sunthatit has, in the course of performing its responsibilities as the Specification Lead, induced any oth-
er entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license granted under sub-
paragraph 2 above, where the infringement of such claims can be avoided in a technically feasible man-
ner when implementing the Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Sun that its making, having made, using, offering to sell, selling or importing a
Compliant Implementation infringes Your patent rights.

5. _Definitions_. For the purposes of this Agreement: "Independent Implementation” shall mean an im-
plementation of the Specification that neither derives from any of Sun’s source code or binary code ma-
terials nor, except with an appropriate and separate license from Sun, includes any of Sun’s source code
or binary code materials; "Licensor Name Space" shall mean the public class or interface declarations
whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming con-
vention adopted by Sun through the Java Community Process, or any recognized successors or replace-
ments thereof, and "Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User’s Guide provided by Sun which corresponds to the Specification and that was
available either (i) from Sun 120 days before the first release of Your Independent Implementation that
allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against
which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act
outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or im-
plement any portion of the Specification in any product. In addition, the Specification could include tech-
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

3 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government'’s rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sub-
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regula-

tions in other countries. Licensee agrees to comply strictly with all such laws and regulations and ac-
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other com-
munication between the parties relating to its subject matter during the term of this Agreement. No mod-
ification to this Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

Rev. April, 2006
Sun/Final/Full

4 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

Table of Contents

Chapter 1 T 1o [0 Tox i o] o 1R PP 15
1.1 EXPEIT GIOUP coeeeeiiiiiitiee ettt e e e e e s ettt e e e e e e s e e et e e e e e e e s e e e e eeeeas 15
1.2 DOCUMENE CONVENTIONSoeiitiieiiiieiiiee sttt et ee sttt et e s e e e snnee e e 15
Chapter 2 ENEIES e+ —— 17
2.1 Requirements on the Entity ClasS.........cccvivieiiiiiiiiie e 17
2.1.1 Persistent Fields and Propertiescccccovueeeeeiiiieeee e 18
2.1.2 EXAMPIE o 21
2.1.3 Entity InStance Creation...........cccuuvueiiiiiiiiiaaiiiieeeee e 22
2.1.4 Primary Keys and Entity [dentity.............cccoiiiiiiiiiiiiieeeeeeenn 22
2.1.5 Embeddable ClasSes.........ccocieiiiiiiiiiiiiiiie et 23
2.1.6 Mapping Defaults for Non-Relationship Fields or Properties........... 23
2.1.7 Entity RelationShipSccooeiiiiiiiieeiee e 24
2.1.8 Relationship Mapping Defaults.............coooiiiiiiiii e 25
2.1.8.1 Bidirectional OneToOne Relationshipscccccvvieeennn. 25
2.1.8.2 Bidirectional ManyToOneOneToMany Relationships 26
2.1.8.3 Unidirectional Single-Valued Relationships....................... 28
2.1.8.3.1 Unidirectional OneToOne Relationships.............. 28
2.1.8.3.2 Unidirectional ManyToOne Relationships........... 29
2.1.8.4 Bidirectional ManyToMany Relationships......................... 30
2.1.8.5 Unidirectional Multi-Valued Relationships......................... 32
2.1.8.5.1 Unidirectional OneToMany Relationships........... 32
2.1.8.5.2 Unidirectional ManyToMany Relationships 33
2.1.9 INNEIIANCE .. .ciiiiiiiie et 34
2.1.9.1 Abstract Entity ClaSSEScuuuiiiieaiiiiiiiiiiieeeee e 35
2.1.9.2 Mapped SUPEICIASSES.......cccuuiiiiiiiieeae et e e e 36
2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy..... 37
2.1.10 Inheritance Mapping Strategies.cuvvieiiiiirieeiiiiieeee i 38
2.1.10.1 Single Table per Class Hierarchy Strategyccceeernee 39
2.1.10.2 Table per Concrete Class Strategycccceeeeeeeeeriiiiunerennnen. 39
2.1.10.3 Joined Subclass Strategy..........ccoocveerrirrreeiiniieeee e 39
Chapter 3 ENLity OPEIatiONSuvveiieiiiieiee ettt et e et e e e sabn e e e e 41...
TN 01114/ =T T T [P ERRPRPR 41
3.1.1 EntityManager INterface...........ccuuuuiiiiiiiieeii e 43
3.1.2 Example of Use of EntityManager APlcccccoieiiiiiiiiiiiiiiieeeeeen, 48
3.2 Entity InStance’s Life CYCIeoooiiiieieee e 48
3.2.1 Persisting an Entity INSANCEcuvviiiiiiiiiiieii e 48
3.2.2 REMOVAI ...ciiiiiiiiiii e 49
3.2.3 Synchronization to the Database............cocceeiiiiiiie i 49
3.2.4 Detached ENItIEScoovvieieiiiiiiee et 50
3.2.4.1 Merging Detached Entity State..........cccceeeeiviiiieeiniiieee e 51
3.2.4.2 Detached Entities and Lazy Loading.......c.c.occuveeeeiiiieeeennns 52
3.2.5 Managed INSTANCEScoocuviiiieiiiiie e 52

5 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

3.3 Persistence Context LIfetimeuuuiiiiiieei i e e 53
3.3.1 Transaction COMIMIL........ccceiiiiiieiiieeiiie et 54
3.3.2 Transaction ROIDACK...........cccooiiiiiiiii e 54

3.4 Optimistic LOCking and CONCUITENCYeeerueeirirereiieeesiieeesreeesieeessereeesnneas 54
3.4.1 OptimiStic LOCKING.......ciieiiiiiiiieieee e 54
3.4.2 Version AtHDULESooiiii e 55
3.4.3 LOCK MOAES....ciiiiieiiiiet ettt e e e e 55
3.4.4 OptimiStiCLOCKEXCEPLION......ccoiiiiiiiiiiiiieiiee e 57

3.5 Entity Listeners and Callback Methods............oooiiiiiiiiiiiiiieiieeeeeeee e 57
3.5.1 Lifecycle Callback Methods.............ccveiiiiiiiiiiiiiiiiiee e 58
3.5.2 Semantics of the Life Cycle Callback Methods for Entities.............. 59
3.5.3 EXAMPIC . 61
3.5.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event61
3. 5.5 EXAMPIC i s 63
3.5.6 EXCEPLONS ...ttt 64

3.5.7 Specification of Callback Listener Classes and Lifecycle Methods in the
XML Descriptor65

3.5.7.1 Specification of Callback Listenersccccccccoviiiiiniinnnnn. 65
3.5.7.2 Specification of the Binding of Entity Listener Classes to Entities
65
78 T PPN ry...Que
API65
3.6.1 QUErY INtEITACE ... e 66
3.6. 1.1 EXAMPIE oo 69
3.6.2 Queries and FIUShMOAE ... 69
3.6.3 Named Parameters.cooii i 69
3.6.4 NAMEA QUEIIESeveriiiiiiiiiiicieisee 69
3.6.5 PolymorphiC QUETIESuueiiiiiiiiee it 70
3.6.6 SOQL QUEIIESt e ettt e e e e e e e e e eeeen e 70
3.7 SumMmMary Of EXCEPONS.....cooiiiiiiiiiieee et a e 74
Chapter 4 QUETY LANQUAGEceeeiiii ittt e e e e e sttt e e e e e e e e s e e st e e e e e e e e e s s s ennrnresnnnnns 77.....
o R @ 1YY 8V < T T 77
4.2 STAEMENT TYPES i i ittt e e e e e e e e e e 78
4.2.1 SeleCt StAtEMENES......ciceeeiei e e e e s e e e e 78
4.2.2 Update and Delete Statements...........ccccvvveeeieeeeee i 79
4.3 Abstract Schema Types and Query DOMAINSc.cceeeveeeeeeeeiiiiiiiiiiieeeeeeeee e 79
o 70t R N =10 11 o [P R PP URRPPPRRN 80
4.3.2 EXAMPI..ciiiiiiiei e 80
4.4 The FROM Clause and Navigational Declarationscccoooeciiiiiiiienneaennn. 82
ot R 1o 1= o | 1T £ P 82
4.4.2 Identification Variables...........cccccvvveee i 83
4.4.3 Range Variable Declarationscccceeiiiiieeiiiiiiieee e 83
A.4.4 Path EXPrESSIONS. ...ccciiiiiiieeiiiiiie ettt e ettt et e st e e e sbbee e e s eeeee 84
TN o] SRR 85
4.4.5.1 Inner Joins (Relationship JOINS).......cccccceviiiiiiiiiiiiiiee e, 85
4.4.5.2 Left OULEI JOINS....ccoiieeiii it e e 86
4.4.5.3 FetCh JOINS ..ccoii i 86

5/2/06 6

Sun Microsystems, Inc.

Chapter 5

Enterprise JavaBeans 3.0, Final Release

4.4.6 Collection Member Declarationsc..ccouiiiiieeiniieeeeniiieee e 87
4.4.7 FROM Clause and SQLoeuviiieiiiiiiiiiiiireeeee e e e e 87
4.4.8 POlYMOPRISIM ...coiiiiiiiiiiiieii e 88
4.5 WHERE CIAUSEttiiiiiiiiee e ittt e e e e s e s s ee e e e e e e e s e s anssntanaeeeeaeaeeesenannns 88
4.6 Conditional EXPreSSIONS.....ccoouiiiiiiiiiiiie et 88
4.6.1 LILEIaAlS .oeeeeiiieeeei e 89
4.6.2 Identification Variables ... 89
4.6.3 Path EXPr@SSIONS ..ccceieiiiiiiiiiiieiee ettt e e e eeaaaeeas 89
4.6.4 INPUE Parameters.ccooo oo 89
4.6.4.1 Positional Parameters.........ccoouiiiiiiiiiiiiieieeee e 90
4.6.4.2 Named Parameters ... 90
4.6.5 Conditional Expression COmMPOSItioNccveierriiiiiiiiiiiiieeeeeeeenn. 90
4.6.6 Operators and Operator PreCedencCe..........coevveeeviiiiiiiiiiiiieeiaaeeee s 91
4.6.7 Between EXPreSSIONS ...t 91
4.6.8 N EXPrESSIONS ...ceuitiiiiiiieaaa ettt e e et e e e e e e e e e e e eneeeeeees 92
4.6.9 Like EXPreSSIONS .. .ot 92
4.6.10 Null CompariSON EXPreSSIONS.cciiiiaaaaiiiiiiiiieieeeeaaa e e e eieeeeeeeeeas 93
4.6.11 Empty Collection Comparison EXpressionsccccceceeeveeeeieiinnnns 93
4.6.12 Collection Member EXPreSSIiONSeeueieiiaaaaiiiiiiiiiiiiiieeeeaaaeeeee e 94
4.6.13 EXIStS EXPIrESSIONS. .. oo iiieiiieiieiie e e ettt e e e e e e e e 94
4.6.14 All Or ANY EXPreSSIONS .cceiiiiiiiiiiiie ittt 95
4.6.15 SUDQUEIIES ...coeiiiiiiie ittt 95
4.6.16 Functional EXPreSSIONSociiiiiiiiiiiiiiieiie e 96
4.6.16.1 String FUNCHONSuuiiiiiiiieiiiiiiiiee it 96
4.6.16.2 Arithmetic FUNCLIONScooooiiiiiiiiiiiee e 97
4.6.16.3 Datetime FUNCHONS...........ueiiiiiiiiaiiiiiiiieeie e 98
4.7 GROUP BY, HAVING ...ttt 98
4.8 SELECT ClAUSE.....cccii ittt ettt e e e e e e e st tre e e e e ae e e s s s annnnreanneeeees 99
4.8.1 Result Type of the SELECT ClauSe..........ccoovviiiviiiiieeeeee e 100
4.8.2 Constructor Expressions in the SELECT Clause..........ccocvcvveeeeeennn. 100
4.8.3 Null Values inthe Query ReSUlt..........cevvveeeiiiiiiiiiiiiieeeee e, 101
4.8.4 Aggregate Functions in the SELECT Clause.......ccccccceeeeiviivvvviennnnn. 101
4.8.4.1 EXAMPIES.....ci oot 102
4.9 ORDER BY ClAUSEcciitiiiiiiiie ittt 102
4.10 Bulk Update and Delete Operationsoccuuuviieiieiiaaeeeieceiiiieeee e e e e 104
411 NUIVAIUES .ottt e e e e e e e e e e e e e s e e s r e aeeeeaeaeeeas 105
4.12 Equality and CompariSON SEMANTICS......uueiiiieeeeiiiiiiiiiieireeee e e e e e ssesinrrrreeeeeeaeens 106
4,13 EXAMPIES ..ottt e e e e e e et r e e e e e e e e e e aaaa 107
4.13.1 SIMPIE QUETIES .. .eeeeieiiiieie ettt 107
4.13.2 Queries with Relationshipsccooiiiiiiii e 107
4.13.3 Queries Using INput Parameters...........ccooviiiieieiiiiiiee e 108
I S N SR 108
Entity Managers and Persistence CONEXESuuuiiiiiiieaaieiiiiiieiieee e e e e eeeeeeee e 113
5.1 PersiStence CONIEXISiiiiciiiiiieiiieie e e e e e sere et e e e e e e s e s s raeereeeeeeeeeeeennneennees 113
5.2 Obtaining an ENtityManagerceceeiiiiiiiiiiiiiieeeee et re e e e e e e e saennees 114
5.2.1 Obtaining an Entity Manager in the Java EE Environment 114

7 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

5.2.2 Obtaining an Application-managed Entity Managercc.......... 115
5.3 Obtaining an Entity Manager FaCtOryccuuvviirieeeeisiiiiiiiieeeeee e e e e s 115
5.3.1 Obtaining an Entity Manager Factory in a Java EE Container 116
5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment..... 116
5.4 The EntityManagerFactory INterface.......cccccccovviiiiiiiiieiieie e 116
5.5 Controlling TranSaACHONS.uuuuiiiiiiiiaaa ettt a e e e e e e e e e e e e e aneees 117
5.5.1 JTA ENtityMaAnNAUEISuvveeeeiiiiiiee e iiiieee ettt ettt sbaeeee e 118
5.5.2 Resource-local EntityManagersccueeveiiiiiieeeiniiieee i 118
5.5.2.1 The EntityTransaction Interface..........ccccccovvieriiinineeinn 118
B5.5.3 EXAMPIC . 120
5.6 Container-managed Persistence CONtEXES........cccuvruiiiiiiieeeeeiiiriiinieeereeee e e en e 120
5.6.1 Container-managed Transaction-scoped Persistence Context........... 121
5.6.2 Container-managed Extended Persistence Context..........ccccceeeeeenns 121
5.6.2.1 Inheritance of Extended Persistence Context 121
5.6.3 Persistence Context Propagation...........ccccceeeeeeiiiiiiiiiineiereeeeeesessinnns 121
5.6.3.1 Requirements for Persistence Context Propagation............ 122
B5.6.4 EXAMPIES ..uttiiiiiiiiie ettt e e e e a e e e e e 123
5.6.4.1 Container-managed Transaction-scoped Persistence Context123
5.6.4.2 Container-managed Extended Persistence Context............ 124
5.7 Application-managed Persistence CONEXLSovvveveeeiviiiiiiiiiiiiieeeee e 124
B.7. 1 EXAMPIES ..ottt a e e e e e e e 125
5.7.1.1 Application-managed Persistence Context used in Stateless Session
Bean125
5.7.1.2 Application-managed Persistence Context used in Stateless Session
Beanl126
5.7.1.3 Application-managed Persistence Context used in Stateful Session
Bean127
5.7.1.4 Application-managed Persistence Context with Resource Transac-
tion128
5.8 Requirements 0N the CONAINETuuviiiieeeee i e e 129
5.8.1 Application-managed Persistence CONteXIS.........ccovvvvveeriiiiieeeennnnn. 129
5.8.2 Container Managed Persistence CONtEXESccuveeeeriirieeeriinieeennns 129
5.9 Runtime Contracts between the Container and Persistence Provider.............. 129
5.9.1 Container Responsibilities.........cccooouiiiiiiiiiiieie e 129
5.9.2 Provider Responsibilities. ... 131
Chapter 6 [011 Y o= Tod ¢ Vo |1 o PR 133.
6.1 PersiSteNCE UNItoeiiiiiiiiiii it e e e e e e e e e 133
6.2 Persistence Unit PAaCkaging..........coooiiiiiiiiiiiiiiie e 134
6.2.1 persistence. XMl fil€. ..o 135
B.2.1.1 NAIME..ciiiiieiiiiieiee et 136
6.2.1.2 tranSaCtioON-TYPE.....ccceeiiiiiiiiiieieee e 136
72 I B o [T Tor o T o PR 136
L A o (0)Y/ T =Y SRR 137
6.2.1.5 jta-data-source, non-jta-data-Source...............cccceeeuvvvvvennnnn. 137
6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes......... 137
L I o (] o 1= 1= SRR 138
6.2.1.8 EXAMPIES..oiiiiiiii it 139

5/2/06 8

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

6.2.2 Persistence UNIt SCOPE....ccciiiiiiieiiiiiiie ettt 140
6.3 persistence.XmMl SCREMA@coiuiiiiiiiii e 142
Chapter 7 Container and Provider Contracts for Deployment and Bootstrappingccccuvee. 147
A N - \V 7= W = = =T o] (o) Y/ 1 = | S 147
7.1.1 Responsibilities of the ContaiNer.............cccoeevciiiiiieeeee e, 147
7.1.2 Responsibilities of the Persistence Providerccccccceeevviiiiciiivnnnen. 148
7.1.3 javax.persistence.spi.PersistenceProvider...........ccccovvvveeeeeeeeiieiiccnnns 148
7.1.3.1 Persistence Unit PropertieS.........cccooccvviieeeeiiee e, 149
7.1.4 javax.persistence.spi.PersistenceUnitIinfo Interface...........cccccceee.... 151
7.2 Bootstrapping in Java SE ENVIFONMENLSccoooviiiiiiiiiiiieeccee e 154
7.2.1 javax.persistence.Persistence ClassS........ccccoiaeiiiiiiiiiiiiiiieeie e 156
Chapter 8 Metadata ANNOTALIONSuuiiiiiiiiie ettt e e 157......
S TNt 1 01113V PEEPRRP 157
8.2 Callback ANNOLALIONSuiiieiiiiee et e eeeeaaa 158
8.3 ANNOotations fOr QUETIESuuuiiiiiiieeeiei ittt e e e e e e s s e e e e e e e e e e s e aeneeees 159
8.3.1 NamedQuery ANNOtatioNccccviiiiiieeeee e 159
8.3.2 NamedNativeQuery ANNOtatioN.............cooviiiviiieeieeee e 159
8.3.3 Annotations for SQL Query Result Set Mappings..............ccccvvvvnneee. 160
8.4 References to EntityManager and EntityManagerFactoryccccceveeeeennn. 161
8.4.1 PersistenceContext ANNOtAtioNccooeevveviieeieeeeeie e, 161
8.4.2 PersistenceUnit ANNOtatioN............couvviiiiiiiiiiiiii e 161
Chapter 9 Metadata for Object/Relational Mappingceeiiviiieiiiiiiee e 163
9.1 Annotations for Object/Relational Mappingcccccceeeviiiiiivinieeieeeeeeseesiinnns 163
9.1.1 Table ANNOAtiONcooeiiiiiiiiee e eeraaas 164
9.1.2 SecondaryTable ANNOTALIONc.vvvieiiiiiiie e 164
9.1.3 SecondaryTables ANNOLAtIONocueeieeiiiiiieen e 166
9.1.4 UniqueConstraint ANNOLAtIONcooiiiiiiiiiiiiiiieee e 166
9.1.5 Column ANNOLALIONiieiiieiiiie et e e e 167
9.1.6 JoinColumn ANNOLAtIONcovveieiieiiiiie e 168
9.1.7 JoinColumns ANNOLALION.........cuviiieiiiiiie e 171
9.1.8 1d ANNOLALION .. .coiiiiiiei et 171
9.1.9 GeneratedValue ANNOtatioNcooeeiiiiiiiieieeieeee e, 172
9.1.10 AttributeOverride AnNNOtationcooeeveeviiiieiiiiiiee e, 173
9.1.11 AttributeOverrides ANNOLAtiON..........cooeeiiiiiiiieeeeeeeie e 174
9.1.12 AssociationOverride ANNOtatioN...........coeevviiieeeeiiiiiii e, 174
9.1.13 AssociationOverrides ANNOLAtIONccoeeeeiiviiiiieeiieiiiiee e 176
9.1.14 Embeddedld ANNOLAtiONoceviiiiiiiiiiee e 176
9.1.15 1dClass ANNOLALION..........eeiiiiiiiiiee e 177
9.1.16 Transient ANNOLALION.........cooiiiiiiiiiiee e 177
9.1.17 Version ANNOLALIONcuuuiiiiiiiiiiie e e 178
9.1.18 BaSIiC ANNOLALIONuuiiieiiie et 178
9.1.19 LoD ANNOLAtIONcvvuniiiiieiiie e 179
9.1.20 Temporal ANNOLALIONcoiiiiiiiiiiiiiiie e a e 180

9 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

9.1.21 Enumerated ANNOtAtiON..........ccccuviiiiiiiie e 181
9.1.22 ManyToONne ANNOLALIONceeeiiiiiiee et 182
9.1.23 ONeToONE ANNOLALIONvvvveeeeeeiicciiiiiieee e e e e e e e e s s e e e e e e e e e e e nnenes 183
9.1.24 OneToMany ANNOLALIONceeeiiiiiiie et 184
9.1.25 JoinTable ANNOLALIONuuuiiiiiieeeie i e e e e 186
9.1.26 ManyToMany ANNOLALIONcooiuiieeiiiiiie e 187
9.1.27 MapKey ANNOLALIONueeiiiiiiiiee e 188
9.1.28 OrderBy ANNOLALIONccoiiiiiieeiiiiiie et 190
9.1.29 Inheritance ANNOLALIONuvivieieeeiie e e e e 190
9.1.30 DiscriminatorColumn AnNNOtatioN............ccoovveciiieiieieee e 191
9.1.31 DiscriminatorValue AnNOtatioN.............cooccivviiiiviiiee e 193
9.1.32 PrimaryKeyJoinColumn ANNOLAtioNcueeeeiiiiieeeeiniiiee e 194
9.1.33 PrimaryKeyJoinColumns ANNOLationocceveeiiieeeeiiniieee e, 195
9.1.34 Embeddable ANNOationccccvveeeeeiisicciiiee e 196
9.1.35 Embedded ANNOLAtioN...........coeeciviiiiiiiie e 197
9.1.36 MappedSuperclass ANNOLALION..........ccuuviiiiiiiiiiee e 197
9.1.37 SequenceGenerator ANNOLALION...........covcviieeiiiiieee e 197
9.1.38 TableGenerator ANNOAtiONccovciviiiiiiiieie e 198
9.2 Examples of the Application of Annotations for Object/Relational Mapping 201
9.2.1 Examples of Simple Mappingscccccciurriiieeee e ee e e 201
9.2.2 A More Complex EXamPle.......cceeieeeeiiiiiiiiiiiiiieeee e 204
Chapter 10 DY [B LT ol] (o SO PPRPRP 209

10.1 XML OVErriding RUIEScccoiiiiiiiiiiiiiee ettt 209
10.1.1 persistence-unit-defaults Subelementscccccceeveiiiiiiiiiiiieeeeceeeen, 210
I 20t O T V] =T o - T SO 210
0 0 2 o7 1 -1 (o Lo [P 210
T10O.1.1.3 GCCESS ..iieeeeeeeieieieee ettt e e e e e e e e e e reaaeeees 210
10.1.1.4 CASCAUE-PEISISt ..eeiiiieeeii ittt e e e e e e e e ennees 210
10.1.1.5 entity-liStENErS.......ccuvviiiiiiiee e 211
10.1.2 Other Subelements of the entity-mappings elementcccceee.... 211
10.1.2.1 PACKAGE w.vvveeieeee ettt 211

O It Tl o =T o - T ORI 211

O 20 T o7 1 -1 o Lo [P 211
10.1.2.4 ACCESS ...ooieeeeeeeeeeee ettt a e e e e e e e e e eees 211
10.1.2.5 SEqUENCE-gENEIALONuuuiieieiiiiiiie et ear s 211
10.1.2.6 table-generatorccccueeeeeeeeee e 211
10.1.2.7 NAMEA-QUETYeuviiiiiiieiieeeee e e e e eeeiirae e e e e e e e e e s e e snrnranaeeeeaeae s 212
10.1.2.8 NaMEd-NALIVE-QUETY ...ceeveeeeeeeieiiiiiiieeeee e e e e e e e seinrrrareeeaea e 212
10.1.2.9 sql-result-set-mapping........ccccoverririeeeee e 212
10.2.2.10 €NLLY couvreiiee ittt 212
10.1.2.11 mapped-SUPErCIass..........ccccvireiiiiieee e 212
10.1.2.12 embeddablecueiiiiiiiii 212
10.1.3 entity Subelements and Attributes............cccccieeee e, 213
10.1.3.1 metadata-cComplete...........coooiiciiiiiiiiiieee e 213
T10.1.3.2 ACCESS ..iieeeeieeieieie ettt e e e e e e e e r e e eees 213
10.1.3.3 NAIME ...t e e e e e e e e e e e e e e e e e e eenerrerennnnnanas 213
10.1.3.4 tADIE.c.eeeiie e 213

5/2/06 10

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

10.1.3.5 secondary-table.........ccccoouiiiiiiiiiiiii 213
10.1.3.6 primary-key-join-ColUuMN...........c.covviiiieiniiiiee e 213
10.1.3.7 00-ClaSS .eeviiieeee ettt 213
10.1.3.8 INhEIIANCE.....cceviiiieiiiii e 214
10.1.3.9 disCriminator-Valueccccuvrriieeeieeee e ieeiiiiieee e e e e e 214
10.1.3.10 discriminator-Column............coccuvriiiieiieee e e e 214
10.1.3.11 SEqUENCE-gENEIALONuurrriieeiieeeeeiieiiierree e e e e e e e e e 214
10.1.3.12 table-gENEIratorccovuuiiieeiiiiieee et 214
10.1.3.13 attribute-0Verride.ccoovuveiieiiiiiie e 214
10.1.3.14 aSSOCIatioN-0VEITIEccoivuriiieeiiiiiiee et 214
10.1.3.15 NAMEA-QUETY ...eeeeiiiiiiieee ittt 215
10.1.3.16 Named-NatiVE-QUETYcocuueeeeiiiieieeeiiiieee e riiee e e siieeee e 215
10.1.3.17 sql-result-Set-mMappingcoocueeeeeiniiieee e 215
10.1.3.18 exclude-default-listeners.........ccccooueeiieiiiiiiiiiiniee e 215
10.1.3.19 exclude-superclass-liStENerscccccceevvviicciiiiiiiieiee e 215
10.1.3.20 entity-lISLENEIS.....eiiiiiiiiieei e 215
10.1.3.21 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load215
10.1.3.22 00 ceeeeeeiiieee e 216
10.1.3.23 embedded-idcooeiiiiiiiii e 216
10.1.3.24 DASIC ..eeeiiiiiieee ittt 216
10.1.3.25 VEBISION. oottt e et e e e e e e e e e e 216
10.1.3.26 MANY-T0-0NEcoiiiiiiiiiiiiiiiiiitiiia e e e e e e e e e e e e e aeeeeeeeeaaeees 216
10.1.3.27 ONE-TO-MANY ...iiiiiiiiiiiiiiiiiiitiet it e e e e e e e e e e e aaeeeeeeeeeeaaeees 216
10.1.3.28 ONE-T0-0NE ...t a e e e e 216
10.1.3.29 MANY-TO-MANY ...cceiiiiiiiiiiiiiiiiiiar e e e e e e e e e e e aaeaeeeeeeeeeaeeeeenaee 216
10.1.3.30 embedded..........uuiiiiiiiieee e 216
10.1.3.31 trANSIENL.....eeiiiiiiiee e a e 216
10.1.4 mapped-superclass Subelements and Attributes.............cccccceeeeeen. 216
10.1.4.1 metadata-complete............ooevieeiiiiiiiiiiiiieeee e 216
F10O.1.4.2 ACCESS ...ovveturutituiniaa e e e e e e e e e e e e e e e e et et et e e e eeaeeatebbabab b as 217
10.1.4.3 0-ClIASS «eeeiiieeieeiee et 217
10.1.4.4 exclude-default-liStENers...........cccviiieiiiiiiiiiiieeeee e, 217
10.1.4.5 exclude-superclass-liSteNerscccccvviiiiiiiiiiiiiiiee s 217
10.1.4.6 entity-liStENersS.........cooiiiiiiie e 217
10.1.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load217
L0.1.4.8 00 weeeiiiie ittt 217
10.1.4.9 embedded-idccooueriiiiiinii e 217
10.1.4.10 DASIC ..veieiuieeeiiie ettt 217
10.1.4. 11 VEISION.ciiitiieiiiie ettt ettt ettt st s e s nnre e 218
10.1.4.12 MaNY-T0-0NE..uuiiiiiiiiiiee ettt eaeaes 218
10.1.4.13 ONE-T0-MANY ...iiiiiiiiiiee et eraaen 218
10.1.4.14 ONE-T0-ONE...cceiiiieiiiiiiiiiiiiiiiit e 218
10.1.4.15 mManY-t0-MANYccuuuiiiiiiiiiiiiei et aeaaan 218
10.1.4.16 embedded.........cocveeiiiiiiie e 218
10.1.4.17 ranSIENT...cco ittt 218
10.1.5 embeddable Subelements and Attributesccccooieiiieiiiiciiiees 218
10.1.5.1 metadata-complete........ccccveeeeeeiiiiiiiiiiiiieeee e 218
J10.1.5.2 GCCESS ..oviiiiiiiiiiiiiiiriiiee e 218

11 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

10.1.5.3 DASIC .coovviiee it 218
O T R T B 1 =14 15 (= o | 219
10.2 XML SCREMA...c.ciiiiiiiiiii e e 220
Chapter 11 Related DOCUMENESttt e e e e e e e e e e e eanbee e e e eean 245.....
Appendix A REVISION HISTOIYiiiiii it e e e e e e e s e 247
AL EArly Draft 1.t 247
A2 EBArlY DIraft 2 ..o 247
A.3 Changes SIiNCE EDR 2......ueuiiiiiiiiii it e e r e e 248
A.4 Changes Since PUBDIC Draft..........ccooiiiiiiiiiiiee e 251
A5 Changes since Proposed Final Draft..........ccccoouiiiiiiiiiiii e 253

5/2/06 12

Sun Microsystems, Inc.

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24

Enterprise JavaBeans 3.0, Final Release

List of Tables
Definition of the AND OPEIALON...........cccciiiiieeie e e e e e e s e e e e e e e e e e eeaeaeessnnnnnns 105
Definition of the OR OPerator.............uuieiiiiiieaaie e
Definition of the NOT Operator
Table ANNotation EIEMENES ... e et e e e e s nnmmmmane e s
SecondaryTable ANNotation EIEMENTS ... e 165
UniqueConstraint ANNotation EIEMENTS...........coiiiiiiiii e s 166
Column Annotation Elements
JoinColumn ANNOotation EIEMENLSccooiiii i e s s —— 170
GeneratedValue AnNotation EIEMENTSc..vviiiiiiiiiiec e e e 172
AttributeOverride AnNNotation EIEBMENLSccciiiiiiiiiice e mmmmmeneeees 173
AssociationOverride Annotation EIEMENLSuuiiiiiiiiii e+ s 175
Basic ANNOLAtiON EIEMENTSviiiiiiiiiiciei ettt s smmmmmmmmmmm——— e 179
Temporal ANnotation EIEMENLS...........cocciiiiiiiiie e e e e ssssnerene e e s 1« L8O
Enumerated AnNotation EIEMENTS. ... e e 181
ManyToOne Annotation Elements .
OneToOne ANNOtation EIEMENLS..........ccviiiiiiiiiecc e e e e anr e e e eeee s

OneToMany AnNotation EIEMENTSc.uuiiiiiiiiiiie e s e LO D
JoinTable ANNOtAtioN EIBMENTS..........uiiiiie ettt et e e et e s e e e s et s 1« L OO
Inheritance AnNNotation EIEMENESceiiiiiiiiiiii e eeeeaie e e e s eesvse s s 0o LO L

DiscriminatorColumn Annotation EIEMENtS............coooiiiiiiiiccccr e eeeeeeeens 192
DiscriminatorValueAnnotation EIEMENTS........uuuiiiiiiii e 193
PrimaryKeyJoinColumn Annotation EIEMENtSuueiiiiiiiiiiiiiiciiieece et s 194..
SequenceGenerator Annotation Elements
TableGenerator ANNOotation EIEMENTSoooiiiiiiiircrr e e e eeeeees

13 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

5/2/06 14

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

amers INtroduction

This document is the specification of the Java API for the management of persistence and object/rela-
tional mapping with Java EE and Java SE. The technical objective of this work is to provide an
object/relational mapping facility for the Java application developer using a Java domain model to man-
age a relational database.

This persistence APl—together with the query language and object/relational mapping metadata
defined in this document—is required to be supported under Enterprise JavaBeans 3.0. It is also tar-
geted at being used stand-alone with Java SE.

Leading experts throughout the entire Java community have come together to build this Java persistence

standard. This work incorporates contributions from the Hibernate, TopLink, and JDO communities, as
well as from the EJB community.

1.1 Expert Group

This work is being conducted as part of JSR-220 under the Java Community Process Program. This
specification is the result of the collaborative work of the members of the JSR 220 Expert Group. These
include the following present and former expert group members: Apache Software Foundation: Jeremy
Boynes; BEA: Seth White; Borland: Jishnu Mitra, Rafay Khawaja; E.piphany: Karthik Kothandaraman;
Fujitsu-Siemens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson, Randy Schnier; IONA:
Conrad O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc Fleury; Macromedia:
Hemant Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle: Michael Keith, Debu
Panda, Olivier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit Yalcinalp; SAS Institute:
Rob Saccoccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun Microsystems: Linda
DeMichiel, Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi; Tmax Soft: Woo Jin
Kim; Versant: David Tinker; Xcalia: Eric Samson, Matthew Adams; Reza Behforooz; Emmanuel Ber-
nard; Wes Biggs; David Blevins; Scott Crawford; Geoff Hendrey; Oliver Ihns; Oliver Kamps; Richard
Monson-Haefel; Dirk Reinshagen; Carl Rosenberger; Suneet Shah.

1.2 Document Conventions

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

15 5/2/06

Sun Microsystems, Inc.

Introduction

Enterprise JavaBeans 3.0, Final Release Document Conventions

The Helvetica font is used to specify the BNF of the Java Persistence query language.

This document is written in terms of the use of Java language metadata annotations to specify the
semantics of persistent classes and their object/relational mapping. An XML descriptor (as specified in
Chapter 10) may be used as an alternative to annotations or to augment or override annotations. The
elements of this descriptor mirror the annotations and have the same semantics.

5/2/06

16

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

Chapter 2

2.1

Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

Requirements on the Entity Class

The entity class must be annotated with Brgity = annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface should not be designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the entity class may be
final.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement tiserializable interface.

17 5/2/06

Sun Microsystems, Inc.

Entities

2.1.1

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to Java-
Beans properties. An instance variable may be directly accessed only from within the methods of the

entity by the entity instance itself. Instance variables must not be accessed by clients of the entity. The

state of the entity is available to clients only through the entity’'s accessor methods (getter/setter meth-

ods) or other business methods. Instance variables must be private, protected, or package visibility.

Persistent Fields and Poperties

The persistent state of an entity is accessed by the persistence provider Wreither via JavaBeans

style property accessors or via instance variables. A single access type (field or property access) applies
to an entity hierarchy. When annotations are used, the placement of the mapping annotations on either
the persistent fields or persistent properties of the entity class specifies the access type as being either
field- or property-based access respectively.

* Ifthe entity has field-based access, the persistence provider runtime accesses instance variables
directly. All nondransient instance variables that are not annotated withTiasient
annotation are persistent. When field-based access is used, the object/relational mapping anno-
tations for the entity class annotate the instance variables.

* If the entity has property-based access, the persistence provider runtime accesses persistent
state via the property accessor methods. All properties not annotated willathgient
annotation are persistent. The property accessor methods must be public or protected. When
property-based access is used, the object/relational mapping annotations for the entity class
annotate the getter property accesébrs

* Mapping annotations cannot be applied to fields or properties thatsangient or Tran-
sient

* The behavior is unspecified if mapping annotations are applied to both persistent fields and
properties or if the XML descriptor specifies use of different access types within a class hierar-
chy.

It is required that the entity class follow the method signature conventions for JavaBeans read/write
properties (as defined by the JavaBeans Introspector class) for persistent properties when persistent
properties are used.

In this case, for every persistent propeptppertyof type T of the entity, there is a getter methaykt-
Property and setter methosletProperty For boolean propertiegsPropertyis an alternative name for
the getter metholf!

(1]
(2]

The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In Java EE environ-
ments, this may be the Java EE container or a third-party persistence provider implementation integrated with it.

These annotations must not be applied to the setter methods.

5/2/06

18

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

For single-valued persistent properties, these method signatures are:
* T getProperty()
* void setProperty(T t)

Collection-valued persistent fields and properties must be defined in terms of one of the following col-
lection-valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans
method conventions noted above and whether field or property-based access is used:
java.util.Collection , java.util.Set , java.util.List (4l java.util.Map

For collection-valued persistent properties, typmust be one of these collection interface types in the
method signatures above. Generic variants of these collection types may also be used (for example,
Set<Order>).

In addition to returning and setting the persistent state of the instance, the property accessor methods
may contain other business logic as well, for example, to perform validation. The persistence provider
runtime executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when prop-
erty-based access is used. The order in which the persistence provider runtime calls these
methods when loading or storing persistent state is not defined. Logic contained in such meth-
ods therefore cannot rely upon a specific invocation order.

If property-based access is used and lazy fetching is specified, portable applications should not directly
access the entity state underlyiﬁ the property methods of managed instances until after it has been
fetched by the persistence proviger.

Runtime exceptions thrown by property accessor methods cause the current transaction to be rolled
back. Exceptions thrown by such methods when used by the persistence runtime to load or store persis-
tent state cause the persistence runtime to rollback the current transaction and toPersisten-

ceException that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications must not
override the object/relational mapping metadata that applies to the persistent fields or properties of
entity superclasses.

K]
[4]
(5]
(6]

Specifically, if geX is the name of the getter method andsistthe name ofthe setter method, whiris a string, the name of the
persistent property is defined by the result of java.beans.Introspector.decafijtalize(

Portable applications should not expect the order of lists to be maintained across persistence contextsQnies3ytheon-
struct is used and the modifications to the list observe the specified ordering. The order is not otherwise persistent.

The implementation type may be used by the application to initialize fields or properties before the entity is madég getsisten
sequent access must be through the interface type once the entity becomes managed (or detached).

Lazy fetching is a hint to the persistence provider and can be specified by means of the Basic, OneToOne, OneToMany, Many-
ToOne, and ManyToMany annotations and their XML equivalents. See chapter 9.

19 5/2/06

Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

The persistent fields or properties of an entity may be of the following types: Java primitive types;

java.lang.String ; other Java serializable types (including wrappers of the primitive types,
java.math.Biginteger , java.math.BigDecimal , java.util.Date ,
java.util.Calendar [java.sqgl.Date , java.sgl.Time , java.sgl.Timestamp ,
user-defined serializable typdsyte[] , Byte[] , char[] , and Character][]) ; enums; entity

types and/or collections of entity types; and embeddable classes (see section 2.1.5).

Object/relational mapping metadata may be specified to customize the object-relational mapping, and
the loading and storing of the entity state and relationships. See Chapter 9.

(7]

Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

5/2/06

20

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

2.1.2 Example

@Entity
public class Customer implements Serializable {

private Long id;

private String name;

private Address address;

private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

/I No-arg constructor
public Customer() {}

@Id /I property access is used
public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@OneToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones() {
return phones;

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

21 5/2/06

Sun Microsystems, Inc.

Entities

2.1.3

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

/l Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);
// Update the phone entity instance to refer to this customer
phone.addCustomer(this);

Entity Instance Creation

214

Entity instances are created by means ofriees operation. An entity instance, when first created by
new is not yet persistent. An instance becomes persistent by meanskrtihgManager API. The
lifecycle of entity instances is described in Section 3.2.

Primary K eys and Entity Identity

Every entity must have a primary key.

The primary key must be defined on the entity that is the root of the entity hierarchy or on a mapped
superclass of the entity hierarchy. The primary key must be defined exactly once in an entity hierarchy.

A simple (i.e., non-composite) primary key must correspond to a single persistent field or property of
the entity class. Thiel annotation is used to denote a simple primary key. See section 9.1.8.

A composite primary key must correspond to either a single persistent field or property or to a set of
such fields or properties as described below. A primary key class must be defined to represent a compos-
ite primary key. Composite primary keys typically arise when mapping from legacy databases when the
database key is comprised of several columns.Himbeddedld andldClass annotations are used

to denote composite primary keys. See sections 9.1.14 and 9.1.15.

The primary key (or field or property of a composite primary key) should be one of the following types:
any Java primitive type; any primitive wrapper tygaya.lang.String ; java.util.Date ;
java.sql.Date . In general, however, approximate numeric types (e.g., floating point types) should
never be used in primary keys. Entities whose primary keys use types other than these will not be porta-
ble. If generated primary keys are used, only integral types will be portahbedfutil.Date is

used as a primary key field or property, the temporal type should be specihiad s

The access type (field- or property-based access) of a primary key class is determined by the access type
of the entity for which it is the primary key.

The following rules apply for composite primary keys.
* The primary key class must be public and must have a public no-arg constructor.

* If property-based access is used, the properties of the primary key class must be public or pro-
tected.

* The primary key class must be serializable.

5/2/06

22

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

2.1.5

* The primary key class must defieguals andhashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the database types
to which the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see
Section 9.1.14, “EmbeddedIld Annotation”) or must be represented and mapped to multiple
fields or properties of the entity class (see Section 9.1.15, “IdClass Annotation”).

* Ifthe composite primary key class is mapped to multiple fields or properties of the entity class,
the names of primary key fields or properties in the primary key class and those of the entity
class must correspond and their types must be the same.

The a?gpilication must not change the value of the primar)ISkthe behavior is undefined if this
occurst

Embeddable Classes

2.1.6

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances themselves, do not have persistent identity. Instead, they exist only as embedded objects
of the entity to which they belong. Such embedded objects belong strictly to their owning entity, and are
not sharable across persistent entities. Attempting to share an embedded object across entities has unde-
fined semantics. Because these objects have no persistent identity, they are typically mapped together
with the entity instance to which they beldhd.

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the excep-
tion that embeddable classes are not annotatéthtisy . Embeddable classes must be annotated as
Embeddable or denoted in the XML descriptor as such. The access type for an embedded object is
determined by the access type of the entity in which it is embedded. Support for only one level of
embedding is required by this specification.

Additional requirements on embeddable classes are described in section 9.1.34.

Mapping Defaults for Non-Relationship Fields or Poperties

If a persistent field or property other than a relationship property is not annotated with one of the map-
ping annotations defined in Chapter 9 (or equivalent mapping information is not specified in the XML
descriptor), the following default mapping rules are applied in order:

* If the type is a class that is annotated with Bmbeddable annotation, it is mapped in the
same way as if the field or property were annotated withBhdedded annotation. See Sec-
tions 9.1.34 and 9.1.35.

8
&)

[10]

This includes not changing the value of a mutable type that is primary key or element of a composite primary key.

The implementation may, but is not required to, throw an exception. Portable applications must not rely on any such specific
behavior.

Support for collections of embedded objects and for the polymorphism and inheritance of embeddable classes will be required in
a future release of this specification.

23 5/2/06

Sun Microsystems, Inc.

Entities

2.1.7

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

* If the type of the field or property is one of the following, it is mapped in the same way as it
would if it were annotated aBasic : Java primitive types, wrappers of the primitive types,

java.lang.String , java.math.BigInteger , Jjava.math.BigDecimal ,
java.util.Date , java.util.Calendar , java.sql.Date , java.sql.Time ,
java.sql.Timestamp , byte[] ,Byte[] ,char[] , Character[] , enums, any other

type that implements Serializable. See Sections 9.1.18 through 9.1.21.

It is an error if no annotation is present and none of the above rules apply.

Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Rela-
tionships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or instance variable of the referencing entity:
OneToOne, OneToMany, ManyToOne, ManyToMany. For associations that do not specify the tar-

get type (e.g., where Java generic types are not used for collections), it is necessary to specify the entity
that is the target of the relationship.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the rela-
tional database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.1.8, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse side. A unidirectional relationship has only an owning side. The owning side of a
relationship determines the updates to the relationship in the database, as described in section 3.2.3.

The following rules apply to bidirectional relationships:

* The inverse side of a bidirectional relationship must refer to its owning side by use of the
mappedBy element of theOneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the rela-
tionship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning
side, hence thmappedBy element cannot be specified on i@nyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that con-
tains the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use ofakeade=REMOVEspecification. The
cascade=REMOVE specification should only be applied to associations that are specifi€hes
ToOne or OneToMany. Applications that applgascade=REMOVEto other associations are not por-
table.

5/2/06

24

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

Additional mapping annotations (e.g., column and table mapping annotations) may be specified to over-
ride or further refine the default mappings described in Section 2.1.8. For example, a foreign key map-
ping may be used for a unidirectional one-to-many mapping. Such schema-level mapping annotations
must be specified on the owning side of the relationship. Any such overriding must be consistent with
the relationship modeling annotation that is specified. For example, if a many-to-one relationship map-
ping is specified, it is not permitted to specify a unique key constraint on the foreign key for the relation-
ship.

The persistence provider handles the object-relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency of runt-
ime relationships—for example, for insuring that the “one” and the “many” sides of a bidirec-
tional relationship are consistent with one another when the application updates the
relationship at runtime.

If there are no associated entities for a multi-valued relationship of an entity fetched from the database,
the persistence provider is responsible for returning an empty collection as the value of the relationship.

2.1.8 Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use oDttledoOne, OneToMany,
ManyToOne, andManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

2.1.8.1 Bidirectional OneToOne Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a single instance of Entity A.
Entity A is specified as the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namigd

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabBe The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

25 5/2/06

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

Example:

@Entity
public class Employee {
private Cubicle assignedCubicle;

@0OneToOne
public Cubicle getAssignedCubicle() {
return assignedCubicle;

}
public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
return residentEmployee;

public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

}
=

In this example:

Entity Employee references a single instance of EnGybicle
Entity Cubicle references a single instance of EnEtyployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Cubicle is mapped to a table nametUBICLE

TableEMPLOYEEontains a foreign key to tableUBICLE. The foreign key column is named
ASSIGNEDCUBICLE<PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of tablEUBICLE. The foreign key column has the same type as the
primary key of CUBICLE, and there is a unique key constraint on it.

2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.

5/2/06 26

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabR The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tables.

Example:

@Entity
public class Employee {
private Department department;

@ManyToOne
public Department getDepartment() {
return department;

public void setDepartment(Department department) {
this.department = department;

@Entity
public class Department {
private Collection<Employee> employees = new HashSet();

@OneToMany(mappedBy="department")

public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

In this example:

Entity Employee references a single instance of Enbigpartment .
Entity Department references a collection of Entimployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity Department is mapped to a table namB&PARTMENT

27 5/2/06

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

Table EMPLOYEEontains a foreign key to tablBEPARTMENTT he foreign key column is
namedDEPARTMENTKPK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of taid=EPARTMENT he foreign key column has the
same type as the primary keyEPARTMENT

2.1.8.3 Unidirectional Single-Valued Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOneor as a unidirectiondanyToOne relationship.

2.1.8.3.1 Unidirectional OneToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tab® The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private TravelProfile profile;

@OneToOne
public TravelProfile getProfile() {
return profile;

public void setProfile(TravelProfile profile) {
this.profile = profile;

@Entity
public class TravelProfile {

-

In this example:

Entity Employee references a single instance of EnfitavelProfile

5/2/06 28

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

Entity TravelProfile does not reference Entiimployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity TravelProfile is mapped to a table naméRAVELPROFILE

TableEMPLOYEEontains a foreign key to tablERAVELPROFILE The foreign key column
is named PROFILE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of taliRAVELPROFILE The foreign key col-
umn has the same type as the primary keyfBAVELPROFILE and there is a unique key
constraint on it.

2.1.8.3.2 Unidirectional ManyToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabB The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tables.

Example:

@Entity
public class Employee {
private Address address;

@ManyToOne
public Address getAddress() {
return address;

}
public void setAddress(Address address) {
this.address = address;

}
=

@Entity
public class Address {

}

In this example:

Entity Employee references a single instance of Enfigdress .
Entity Address does not reference Entimployee .
Entity Employee is the owner of the relationship.

29 5/2/06

Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE

Entity Address is mapped to a table nama@®DRESS

TableEMPLOYE[Eontains a foreign key to tableDDRESSThe foreign key column is named
ADDRESS<PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary
key column of tableADDRESSThe foreign key column has the same type as the primary key
of ADDRESS

2.1.8.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B references a collection of Entity A.
Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity BY;"the name of the primary key col-
umn in tableA. The other foreign key column refers to taBl@and has the same type as the pri-
mary key of tableB. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A';"the name of the pri-
mary key column in tablB.

5/2/06

30

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release

Example:

@Entity
public class Project {
private Collection<Employee> employees;

@ManyToMany
public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

@Entity

public class Employee {
private Collection<Project> projects;
@ManyToMany(mappedBy="employees")

public Collection<Project> getProjects() {
return projects;

public void setProjects(Collection<Project> projects) {
this.projects = projects;

In this example:

Entity Project references a collection of EntiBmployee .

Entity Employee references a collection of EntiBroject
Entity Project is the owner of the relationship.

The following mapping defaults apply:

Entity Project is mapped to a table namB&OJECT
Entity Employee is mapped to a table nameEMPLOYEE

Entities

There is a join table that is nam&ROJECT_EMPLOYEHKowner name first). This join table
has two foreign key columns. One foreign key column refers to tBRR®JECTand has the
same type as the primary key #fROJECT The name of this foreign key column is
PROJECTS<PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary

key column of tabld®PROJECT The other foreign key column refers to tali®PLOYERnd

has the same type as the primary keyebiPLOYEEThe name of this foreign key column is
EMPLOYEESPK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the

primary key column of tablEMPLOYEE

31

Sun Microsystems, Inc.

Entities

2.1.85

2.1.851

Enterprise JavaBeans 3.0, Final Release

Unidirectional Multi-Valued Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B does not reference Entity A.

Requirements on the Entity Class

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional

OneToMany or as a unidirectiondlanyToMany relationship.
Unidirectional OneToMany Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; ""; the name of the primary key column in tab% The other foreign

key column refers to tablB and has the same type as the primary key of t8dad there is a
unique key constraint on it. The name of this foreign key column is formed as the concatena-
tion of the following: the name of the relationship property or field of entity A};'the name

of the primary key column in tabk
Example:

@Entity
public class Employee {
private Collection<AnnualReview> annualReviews;

@OneToMany
public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualRe-
views) {

this.annualReviews = annualReviews;

}
}
@Entity
public class AnnualReview {
}

In this example:

5/2/06

32

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

Entity Employee references a collection of EntijnnualReview .
Entity AnnualReview does not reference EntiBmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity AnnualReview is mapped to a table namAdINUALREVIEW

There is a join table that is nam&MPLOYEE_ANNUALREVIEbwner name first). This
join table has two foreign key columns. One foreign key column refers to &lBLOYEE
and has the same type as the primary ke BfPLOYEEThis foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tablEMPLOYEEThe other foreign key column refers to taBlBINUAL-
REVIEWand has the same type as the primary keYADNUALREVIEWThis foreign key
column is namedANNUALREVIEWSPK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of taddMNUALREVIEWT here

is a unique key constraint on the foreign key that refers to A@iNMUALREVIEW

2.1.8.5.2 Unidirectional ManyToMany Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namBd

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entityy; " _"; the name of the primary key column in tabe The other foreign

key column refers to tablB and has the same type as the primary key of t&8blehe name of

this foreign key column is formed as the concatenation of the following: the name of the rela-

tionship property or field of entit); "_"; the name of the primary key column in taBle

33 5/2/06

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

Example:

@Entity
public class Employee {
private Collection<Patent> patents;

@ManyToMany
public Collection<Patent> getPatents() {
return patents;

public void setPatents(Collection<Patent> patents) {
this.patents = patents;

@Entity
public class Patent {

}

In this example:

Entity Employee references a collection of EntilBatent .
Entity Patent does not reference Entigmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Patent is mapped to a table namEATENT

There is a join table that is nam&MPLOYEE_PATENTowner name first). This join table
has two foreign key columns. One foreign key column refers to taM®LOYERNd has the
same type as the primary key d&EMPLOYEE This foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tabl&EMPLOYEEThe other foreign key column refers to tatHATENT
and has the same type as the primary keyPATENT This foreign key column is named
PATENTS <PK of PATENT>, where <PK of PATENT> denotes the name of the primary key
column of tablePATENT

2.1.9 Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated
with theEntity — annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

5/2/06 34

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

These concepts are described further in the following sections.

2.1.9.1 Abstract Entity Classes
An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with fatity annotation or denoted in the XML descriptor as
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.
Example: Abstract class as an Entity

@Entity
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {
@Id protected Integer empld;
@Version protected Integer version;
@ManyToOne protected Address address;

@Entity

@Table(name="FT_EMP")
@DiscriminatorValue("FT")
@PrimaryKeyJoinColumn(name="FT_EMPID")
public class FullTimeEmployee extends Employee {

Il Inherit empld, but mapped in this class to FT_EMP.FT_EMPID
I Inherit version mapped to EMP.VERSION
/I Inherit address mapped to EMP.ADDRESS fk

// Defaults to FT_EMP.SALARY
protected Integer salary;

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("PT")
/I PK field is PT_EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

35 5/2/06

Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

2.1.9.2 Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information,
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define state
and mapping information that is common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and cannot be passed as an argantient to
tyManager or Query operations. A mapped superclass cannot be the target of a persistent relation-
ship.

Both abstract and concrete classes may be specified as mapped superclassdsppdtSuper-
class annotation (ormapped-superclass XML descriptor element) is used to designate a
mapped superclass.

A class designated &appedSuperclass has no separate table defined for it. Its mapping informa-
tion is applied to the entities that inherit from it.

A class designated ddappedSuperclass can be mapped in the same way as an entity except that
the mappings will apply only to its subclasses since no table exists for the mapped superclass itself.
When applied to the subclasses, the inherited mappings will apply in the context of the subclass tables.
Mapping information can be overridden in such subclasses by usinittiiieuteOverride and
AssociationOverride annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designatdamsedSuperclass

The following example illustrates the definition of a concrete class as a mapped superclass.

5/2/06

36

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

Example: Concrete class as a mapped superclass

@MappedSuperclass
public class Employee {

@Id protected Integer empld;

@Version protected Integer version;
@ManyToOne @JoinColumn(name="ADDR")
protected Address address;

public Integer getEmpld() { ... }

public void setEmpld(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address addr) { ... }

}

/I Default table is FTEMPLOYEE table
@Entity
public class FTEmployee extends Employee {

Il Inherited empld field mapped to FTEMPLOYEE.EMPID
/I Inherited version field mapped to FTEMPLOYEE.VERSION
/I Inherited address field mapped to FTEMPLOYEE.ADDR fk

I/ Defaults to FTEMPLOYEE.SALARY
protected Integer salary;

public FTEmployee() {}

public Integer getSalary() { ... }
public void setSalary(Integer salary) { ... }

}

@Entity @Table(name="PT_EMP")
@AssociationOverride(name="address",

joincolumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

/I Inherited empld field mapped to PT_EMP.EMPID

Il Inherited version field mapped to PT_EMP.VERSION

/l address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(name="WAGE")

protected Float hourlyWage;

public PartTimeEmployee() {}

public Float getHourlyWage() { ... }
public void setHourlyWage(Float wage) { ... }
}

2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy
An entity can have a non-entity superclass, which may be either a concrete or abstréét class.

[11] The superclass may not be an embeddable class or id class.

37 5/2/06

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting entity
class. This non-persistent state is not managed by the EntityMéJr%gelny annotations on such
superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods Erfititydlanager or Query
interfaces and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.
Example: Non-entity superclass

public class Cart {

/I This state is transient
Integer operationCount;

public Cart() { operationCount = 0; }
public Integer getOperationCount() { return operationCount; }
public void incrementOperationCount() { operationCount++; }

}

@Entity
public class ShoppingCart extends Cart {

Collection<Item> items = new Vector<ltem>();

public ShoppingCart() { super(); }

@OneToMany
public Collection<Item> getltems() { return items; }
public void addltem(ltem item) {

items.add(item);

incrementOperationCount();

2.1.10 Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database:

* asingle table per class hierarchy

* atable per concrete entity class

[12] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.

5/2/06 38

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Final Release Entities

* astrategy in which fields that are specific to a subclass are mapped to a separate table than the
fields that are common to the parent class, and a join is performed to instantiate the subclass.

An implementation is required to support the single table per class hierarchy inheritance mapping strat-
egy and the joined subclass strategy.

Support for the table per concrete class inheritance mapping strategy is optional in this
release.

Support for the combination of inheritance strategies within a single entity inheritance hierar-
chy is not required by this specification.

2.1.10.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
gueries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

2.1.10.2 Table per Concrete Class Strategy
In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:
* |t provides poor support for polymorphic relationships.

e Ittypically requires that SQL UNION queries (or a separate SQL query per subclass) be issued
for queries that are intended to range over the class hierarchy.

2.1.10.3 Joined Subclass Strategy
In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each sub-
class is represented by a separate table that contains those fields that are specific to the subclass (not
inherited from its superclass), as well as the column(s) that represent its primary key. The primary key
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.
It has the drawback that it requires that one or more join operations be performed to instantiate instances

of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range
over the class hierarchy likewise require joins.

39 5/2/06

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Final Release Requirements on the Entity Class

5/2/06 40

Sun Microsystems, Inc.

EntityManager

Chapter 3

3.1

Enterprise JavaBeans 3.0, Final Release Entity Operations

Entity Operations

This chapter describes the use of BtityManager API to manage the entity instance lifecycle and
the use of thQuery API to retrieve and query entities and their persistent state.

EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are manage@nfitydlanager inter-

face defines the methods that are used to interact with the persistence contexmtityidanager

APl is used to create and remove persistent entity instances, to find entities by their primary key, and to
guery over entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application, and
which must be colocated in their mapping to a single database.

41 5/2/06

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Final Release EntityManager

Section 3.1 defines thentityManager interface. The entity instance lifecycle is described in Sec-

tion 3.2. The relationships between entity managers and persistence contexts are described in section
3.3 and in further detail in Chapter 5. Section 3.5 describes entity listeners and lifecycle callback meth-
ods for entities. Th&Query interface is described in section 3.6. The definition of persistence units is
described in chapter 6.

5/2/06

42

Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Final Release Entity Operations

3.1.1 EntityManager Interface

package javax.persistence;

/**
* Interface used to interact with the persistence context.
*/

public interface EntityManager {

/**

* Make an instance managed and persistent.

* @param entity

* @throws EntityExistsException if the entity already exists.
* (The EntityExistsException may be thrown when the persist
* operation is invoked, or the EntityExistsException or

* another PersistenceException may be thrown at flush or

* commit time.)

* @throws lllegalArgumentException if not an entity

* @throws TransactionRequiredException if invoked on a

* container-managed entity manager of type

* PersistenceContextType. TRANSACTION and there is

* no transaction.

*/

public void persist(Object entity);

/**

* Merge the state of the given entity into the

* current persistence context.

* @param entity

* @return the instance that the state was merged to

* @throws lllegalArgumentException if instance is not an
entity or is a removed entity

* @throws TransactionRequiredException if invoked on a

* container-managed entity manager of type

* PersistenceContextType. TRANSACTION and there is

* no transaction.

*/

public <T> T merge(T entity);

/**

* Remove the entity instance.
* @param entity
* @throws lllegalArgumentException if not an entity
or if a detached entity
* @throws TransactionRequiredException if invoked on a
* container-managed entity manager of type
* PersistenceContextType. TRANSACTION and there is
* no transaction.
*/
public void remove(Object entity);

/**
* Find by primary key.
* @param entityClass
* @param primaryKey
* @return the found entity instance or null

if the entity does not exist
* @throws lllegalArgumentException if the first argument does

not denote an entity type or the second

43 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release
* argument is not a valid type for that
* entity’s primary key
*/

public <T> T find(Class<T> entityClass, Object primaryKey);

/**

* Get an instance, whose state may be lazily fetched.
* |f the requested instance does not exist in the database,
* the EntityNotFoundException is thrown when the instance
* state is first accessed. (The persistence provider runtime is
* permitted to throw the EntityNotFoundException when
* getReference is called.)
* The application should not expect that the instance state will
* be available upon detachment, unless it was accessed by the
* application while the entity manager was open.
* @param entityClass
* @param primaryKey
* @return the found entity instance
* @throws lllegalArgumentException if the first argument does
not denote an entity type or the second
argument is not a valid type for that
entity’s primary key
* @throws EntityNotFoundException if the entity state
cannot be accessed

* * ok

*/

public <T> T getReference(Class<T> entityClass, Object prima-
ryKey);

/**

* Synchronize the persistence context to the

* underlying database.

* @throws TransactionRequiredException if there is

no transaction

* @throws PersistenceException if the flush fails

*/

public void flush();

/**
* Set the flush mode that applies to all objects contained

* in the persistence context.
* @param flushMode
*/

public void setFlushMode(FlushModeType flushMode);

/**
* Get the flush mode that applies to all objects contained

* in the persistence context.
* @return flushMode
*

/
public FlushModeType getFlushMode();

/**

* Set the lock mode for an entity object contained

* in the persistence context.

* @param entity

* @param lockMode

* @throws PersistenceException if an unsupported lock call
is made

EntityManager

5/2/06 44

Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Final Release Entity Operations

* @throws lllegalArgumentException if the instance is not
an entity or is a detached entity

* @throws TransactionRequiredException if there is no
transaction

*

/

public void lock(Object entity, LockModeType lockMode);

/**

* Refresh the state of the instance from the database,

* gverwriting changes made to the entity, if any.

* @param entity

* @throws lllegalArgumentException if not an entity

or entity is not managed

* @throws TransactionRequiredException if invoked on a
* container-managed entity manager of type

* PersistenceContextType. TRANSACTION and there is

* no transaction.

* @throws EntityNotFoundException if the entity no longer

exists in the database

*

/
public void refresh(Object entity);

/**

* Clear the persistence context, causing all managed

* entities to become detached. Changes made to entities that
* have not been flushed to the database will not be

* persisted.

*/

public void clear();

/**
* Check if the instance belongs to the current persistence
* context.
* @param entity
* @return
* @throws lllegalArgumentException if not an entity
*
/
public boolean contains(Object entity);

/**

* Create an instance of Query for executing a

* Java Persistence query language statement.

* @param gIString a Java Persistence query string

* @return the new query instance

* @throws lllegalArgumentException if query string is not valid
*/

public Query createQuery(String qlString);

/**

* Create an instance of Query for executing a

* named query (in the Java Persistence query language

* or in native SQL).

* @param name the name of a query defined in metadata

* @return the new query instance

* @throws lllegalArgumentException if a query has not been
* defined with the given name

*/

public Query createNamedQuery(String name);

45 5/2/06

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Final Release

/**

* Create an instance of Query for executing

* a native SQL statement, e.g., for update or delete.

* @param sqlString a native SQL query string

* @return the new query instance

*/

public Query createNativeQuery(String sqlString);

/**

* Create an instance of Query for executing

* a native SQL query.

* @param sqlString a native SQL query string

* @param resultClass the class of the resulting instance(s)
* @return the new query instance

*/

public Query createNativeQuery(String sqlString, Class result-

Class);

/**
* Create an instance of Query for executing
* a native SQL query.
* @param sqlString a native SQL query string
* @param resultSetMapping the name of the result set mapping
* @return the new query instance
*
/

public Query createNativeQuery(String sqlString, String result-

SetMapping);

/**

* Indicate to the EntityManager that a JTA transaction is

* active. This method should be called on a JTA application

* managed EntityManager that was created outside the scope
* of the active transaction to associate it with the current

* JTA transaction.

* @throws TransactionRequiredException if there is

* no transaction.

*/

public void joinTransaction();

/**

* Return the underlying provider object for the EntityManager,
* if available. The result of this method is implementation

* specific.

*/

public Object getDelegate();

/**

* Close an application-managed EntityManager.
* After the close method has been invoked, all methods
* on the EntityManager instance and any Query objects obtained
* from it will throw the lllegalStateException except
* for getTransaction and isOpen (which will return false).
* If this method is called when the EntityManager is
* associated with an active transaction, the persistence
* context remains managed until the transaction completes.
* @throws lllegalStateException if the EntityManager
* is container-managed.
*
/
public void close();

EntityManager

5/2/06

46

Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Final Release Entity Operations

/**

* Determine whether the EntityManager is open.

* @return true until the EntityManager has been closed.
*/

public boolean isOpen();

/**

* Return the resource-level transaction object.
* The EntityTransaction instance may be used serially to
* begin and commit multiple transactions.
* @return EntityTransaction instance
* @throws lllegalStateException if invoked on a JTA
* EntityManager.
*
/
public EntityTransaction getTransaction();

}

Thepersist , merge, remove , andrefresh methods must be invoked within a transaction con-
text when an entity manager with a transaction-scoped persistence context is used. If there is no transac-
tion context, thgavax.persistence.TransactionRequiredException is thrown.

Thefind andgetReference methods are not required to be invoked within a transaction context. If

an entity manager with transaction-scoped persistence context is in use, the resulting entities will be
detached; if an entity manager with an extended persistence context is used, they will be managed. See
section 3.3 for entity manager use outside a transaction.

TheQuery andEntityTransaction objects obtained from an entity manager are valid while that
entity manager is open.

If the argument to thereateQuery method is not a valid Java Persistence query stringlligre
galArgumentException may be thrown or the query execution will fail. If a native query is not a
valid query for the database in use or if the result set specification is incompatible with the result of the
query, the query execution will fail andRersistenceException will be thrown when the query

is executed. ThéersistenceException should wrap the underlying database exception when
possible.

Runtime exceptions thrown by the methods of BrgityManager interface will cause the current
transaction to be rolled back.

The methodglose , isOpen , joinTransaction , andgetTransaction are used to manage
application-managed entity managers and their lifecycle. See Section 5.2.2, “Obtaining an Applica-
tion-managed Entity Manager”.

47 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.1.2

Enterprise JavaBeans 3.0, Final Release Entity Instance’s Life Cycle

Example of Use of EntityManager API

3.2

@Stateless public class OrderEntryBean implements OrderEntry {
@PersistenceContext EntityManager em;

public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);
newOrder.setCustomer(cust);

}
}

Entity Instance’s Life Cycle

3.2.1

This section describes tlntityManager operations for managing an entity instance’s lifecycle. An
entity instance may be characterized as being new, managed, detached, or removed.

* A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

* A managed entity instance is an instance with a persistent identity that is currently associated
with a persistence context.

* A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

* A removed entity instance is an instance with a persistent identity, associated with a persis-
tence context, that is scheduled for removal from the database.

The following subsections describe the effect of lifecycle operations upon entities. Usecabttzale

annotation element may be used to propagate the effect of an operation to associated entities. The cas-
cade functionality is most typically used in parent-child relationships.

Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invokipgrist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an ehétg as follows:

e If X'is a new entity, it becomes managed. The entity X will be entered into the database at or
before transaction commit or as a result of the flush operation.

* If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other
entities is annotated with theascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

5/2/06

48

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Final Release Entity Operations

3.2.2

* If X is a removed entity, it becomes managed.

* If X is a detached object, thentityExistsException may be thrown when the persist
operation is invoked, or th&ntityExistsException or anotherPersistenceEx-
ception may be thrown at flush or commit time.

* For all entities Y referenced by a relationship from X, if the relationship to Y has been anno-

tated with thecascade element valueascade=PERSIST or cascade=ALL , the persist
operation is applied to V.

Removal

3.2.3

A managed entity instance becomes removed by invokingaim@ve method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

* If X is a new entity, it is ignored by the remove operation. However, the remove operation is
cascaded to entities referenced by X, if the relationship from X to these other entities is anno-
tated with thecascade=REMOVEor cascade=ALL annotation element value.

* If Xis a managed entity, the remove operation causes it to become removed. The remove oper-
ation is cascaded to entities referenced by X, if the relationships from X to these other entities
is annotated with theascade=REMOVEor cascade=ALL annotation element value.

* If Xis a detached entity, alegalArgumentException will be thrown by the remove
operation (or the transaction commit will fail).

* If X is a removed entity, it is ignored by the remove operation.

* Aremoved entity X will be removed from the database at or before transaction commit or as a
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the
point at which the remove operation was called.

Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synchroniza-
tion involving writing to the database any updates to persistent entities and their relationships as speci-
fied above.

An update to the state of an entity includes both the assignment of a new value to a persistent property
or field of the entity as well as the modification of a mutable value of a persistent property or field.

Synchronization to the database does not involve a refresh of any managed entities uméfessine
operation is explicitly invoked on those entities.

49 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.2.4

Enterprise JavaBeans 3.0, Final Release Entity Instance’s Life Cycle

Bidirectional relationships between managed entities will be persisted based on references held by the
owning side of the relationship. It is the developer’s responsibility to keep the in-memory references
held on the owning side and those held on the inverse side consistent with each other when they change.
In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s responsibil-
ity to insure that the semantics of the relationships are adhelfédi to.

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database.

The persistence provider runtime is permitted to perform synchronization to the database at other times
as well when a transaction is active. Thesh method can be used by the application to force syn-
chronization. It applies to entities associated with the persistence contexEniiygManager and

Query setFlushMode methods can be used to control synchronization semantics. The effect of
FlushModeType.AUTO is defined in section 3.6.2. FlushModeType.COMMIT is specified,
flushing will occur at transaction commit; the persistence provider is permitted, but not required, to per-
form to flush at other times. If there is no transaction active, the persistence provider must not flush to
the database.

The semantics of the flush operation, applied to an extie as follows:

* If X is a managed entity, it is synchronized to the database.

* For all entities Y referenced by a relationship from X, if the relationship to Y has been
annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL , the persist operation is applied to Y.

* For any entity Y referenced by a relationship from X, where the relationship to Y has
not been annotated with tltascade element valueascade=PERSIST or cas-

cade=ALL :
* If Y is new or removed, atilegalStateException will be thrown by
the flush operation (and the transaction rolled back) or the transaction com-
mit will fail.

* If Y is detached, the semantics depend upon the ownership of the relation-
ship. If X owns the relationship, any changes to the relationship are synchro-
nized with the database; otherwise, if Y owns the relationships, the behavior
is undefined.

* If X is a removed entity, it is removed from the database. No cascade options are relevant.

Detached Entities

A detached entity may result from transaction commit if a transaction-scoped container-managed entity
manager is used (see section 3.3); from transaction rollback (see section 3.3.2); from clearing the persis-
tence context; from closing an entity manager; and from serializing an entity or otherwise passing an
entity by value—e.g., to a separate application tier, through a remote interface, etc.

[13]

This might be an issue if unique constraints (such as those described for the default mappings in sections 2.1 B84.8nd 2.
were not applied in the definition of the object/relational mapping.

5/2/06

50

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Final Release Entity Operations

Detached entity instances continue to live outside of the persistence context in which they were per-
sisted or retrieved, and their state is no longer guaranteed to be synchronized with the database state.

The application may access the available state of available detached entity instances after the persis-
tence context ends. The available state includes:

* Any persistent field or property not markietch=LAZY
* Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the available state of an associated instance may only
be safely accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved usifigd()
* Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN clause.

* Any entity instance for which an instance variable holding non-primary-key persistent state
was accessed by the application.

* Any entity instance that may be reached from another available instance by navigating associa-
tions markedetch=EAGER .

3.2.4.1 Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the EntityManager.

The semantics of the merge operation applied to an entity X are as follows:

* If Xis a detached entity, the state of X is copied onto a pre-existing managed entity instance X'
of the same identity or a new managed copy X' of X is created.

e If X is a new entity instance, a new managed entity instance X' is created and the state of X is
copiedinto the new managed entity instance X'.

* If Xis a removed entity instance, difegalArgumentException will be thrown by the
merge operation (or the transaction commit will fail).

e If Xis a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been anno-
tated with thecascade element valueascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having tascade element value
cascade=MERGE or cascade=ALL , Y is merged recursively as Y'. For all such Y refer-
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same object as
X")

51 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.24.2

3.2.5

Enterprise JavaBeans 3.0, Final Release Entity Instance’s Life Cycle

e If X'is an entity merged to X', with a reference to another entity Y, whemrscade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yields a
reference to a managed object Y' with the same persistent identity as .

The persistence provider must not merge fields marked LAZY that have not been fetched: it must ignore
such fields when merging.

Any Version columns used by the entity must be checked by the persistence runtime implementation
during the merge operation and/or at flush or commit time. In the abseMarsibn columns there is
no additional version checking done by the persistence provider runtime during the merge operation.

Detached Entities and Lazy Loading
Serializing entities and merging those entities back into a persistence context may not be interoperable
across vendors when lazy properties or fields and/or relationships are used.

A vendor is required to support the serialization and subsequent deserialization and merging of detached
entity instances (which may contain lazy properties or fields and/or relationships that have not been
fetched) back into a separate JVM instance of that vendor's runtime, where both runtime instances have
access to the entity classes and any required vendor persistence implementation classes.

When interoperability across vendors is required, the application must not use lazy loading.

Managed Instances

It is the responsibility of the application to insure that an instance is managed in only a single persis-
tence context. The behavior is undefined if the same Java instance is made managed in more than one
persistence context.

The contains() method can be used to determine whether an entity instance is managed in the cur-
rent persistence context.

Thecontains method returns true:
* If the entity has been retrieved from the database, and has not been removed or detached.

* Ifthe entity instance is new, and tpersist method has been called on the entity or the per-
sist operation has been cascaded to it.

Thecontains method returns false:
¢ |f the instance is detached.

* If the remove method has been called on the entity, or the remove operation has been cas-
caded to it.

* |Ifthe instance is new, and tipeersist method has not been called on the entity or the persist
operation has not been cascaded to it.

5/2/06

52

Sun Microsystems, Inc.

Persistence Context Lifetime Enterprise JavaBeans 3.0, Final Release Entity Operations

3.3

Note that the effect of the cascading of persist or remove is immediately visible totitains
method, whereas the actual insertion or deletion of the database representation for the entity may be
deferred until the end of the transaction.

Persistence Context Lifetime

The lifetime of a container-managed persistence context may either be scoped to a transaction (transac-
tion-scoped persistence context), or have a lifetime scope that extends beyond that of a single transac-
tion (extended persistence context). The erRensistenceContextType is used to define the
persistence context lifetime scope for container-managed entity managers. The persistence context life-
time scope is defined when the EntityManager instance is created (whether explicitly, or in conjunction
with injection or JNDI lookup). See Section 5.6.

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

}

By default, the lifetime of the persistence context of a container-managed entity manager corresponds to
the scope of a transaction (i.e., it is of tpEFsistenceContextType. TRANSACTION).

When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple trans-
actions and non-transactional invocations of the EntityManager. The extended persistence context is
enlisted in the current transaction when the EntityManager is invoked in the scope of that transaction or
when the stateful session bean to which the extended persistence context is bound is invoked in the
scope of that transaction.

An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager, and they may
be updated as managed objects between transa%mtavigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether a trans-
action is active.

When an EntityManager with an extended persistence context is used, the persist, remove, merge, and
refresh operations may be called regardless of whether a transaction is active. The effects of these oper-
ations will be committed to the database when the extended persistence context is enlisted in a transac-
tion and the transaction commits.

The scope of the persistence context of an application-managed entity manager is extended. It is the
responsibility of the application to manage the lifecycle of the persistence context.

Extended persistence contexts are described futher in section 5.7.

[14]

Note that when a new transaction is begun, the managed objects in an extended persistence cootesioaeed from the data-
base.

53 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.3.1

Enterprise JavaBeans 3.0, Final Release Optimistic Locking and Concurrency

Transaction Commit

3.3.2

The managed entities of a transaction-scoped persistence context become detached when the transaction
commits; the managed entities of an extended persistence context remain managed.

Transaction Rollback

3.4

For both transaction-scoped and extended persistence contexts, transaction rollback garesexgist

ing managed instances and removed instdhte® become detached. The instances’ state will be the

state of the instances at the point at which the transaction was rolled back. Transaction rollback typi-
cally causes the persistence context to be in an inconsistent state at the point of rollback. In particular,
the state of version attributes and generated state (e.g., generated primary keys) may be inconsistent.
Instances that were formerly managed by the persistence context (including new instances that were
made persistent in that transaction) may therefore not be reusable in the same manner as other detached
objects—for example, they may fail when passed to the merge opé?glion.

Optimistic Locking and Concurrency

3.4.1

This specification assumes the use of "optimistic locking". It assumes that the databases to which per-
sistence units are mapped will be accessed by implementations using read-committed isolation (or a
vendor equivalent in which long-term read locks are not held), and that writes to the database typically
occur only when thélush method has been invoked—whether explicitly by the application, or by the
persistence provider runtime in accordance with the flush mode setting. If a transaction is active, a com-
pliant implementation of this specification is permitted to write to the database immediately (i.e., when-
ever a managed entity is updated, created, and/or removed), however, the configuration of an
implementation to require such non-deferred database writes is outside the scope of this specification.
The configuration of the setting of optimistic lock modes is described in section 3.4.3. Applications that
prefer the use of pessimistic locking may require that database isolation levels higher than read-commit-
ted be in effect. The configuration of the setting of such database isolation levels, however, is outside the
scope of this specification.

Optimistic Locking

Optimistic locking is a technique that is used to insure that updates to the database data corresponding
to the state of an entity are made only when no intervening transaction has updated that data for the
entity state since the entity state was read. This insures that updates or deletes to that data are consistent
with the current state of the database and that intervening updates are not lost. Transactions that would
cause this constraint to be violated result in@ptimisticLockException being thrown and
transaction rollback.

[15] These are instances that were persistent in the database at the start of the transaction.

[16]

It is unspecified as to whether instances that were not persistent in the database behave as new instances or detegshed insta
after rollback. This may be implementation-dependent.

5/2/06

54

Sun Microsystems, Inc.

Optimistic Locking and Concurrency Enterprise JavaBeans 3.0, Final Release Entity Operations

3.4.2

Portable applications that wish to enable optimistic locking for entities must sp¥efgion

attributes for those entities—i.e., persistent properties or fields annotated witkitsien annotation

or specified in the XML descriptor as version attributes. Applications are strongly encouraged to enable
optimistic locking for all entities that may be concurrently accessed or merged from a disconnected
state. Failure to use optimistic locking may lead to inconsistent entity state, lost updates and other state
irregularities. If optimistic locking is not defined as part of the entity state, the application must bear the
burden of maintaining data consistency.

Version Attrib utes

3.4.3

TheVersion field or property is used by the persistence provider to perform optimistic locking. Itis
accessed and/or set by the persistence provider in the course of performing lifecycle operations on the
entity instance. An entity is automatically enabled for optimistic locking if it has a property or field
mapped with &ersion mapping.

An entity may access the state of its version field or property or export a method for use by the applica-
tion to access the version, but must not modify the version Ue?l]ueOnly the persistence provider is
permitted to set or update the value of the version attribute in the object.

The version attribute is updated by the persistence provider runtime when the object is written to the
database. All non-relationship fields and properties and all relationships owned by the entity are
included in version checks.

The persistence provider's implementation of the merge operation must examine the version attribute
when an entity is being merged and throw@ptimisticLockException if it is discovered that

the object being merged is a stale copy of the entity—i.e. that the entity has been updated since the
entity became detached. Depending on the implementation strategy used, it is possible that this excep-
tion may not be thrown untilush is called or commit time, whichever happens first.

The persistence provider runtime is only required to use the version attribute when performing optimis-
tic lock checking. Persistence provider implementations may provide additional mechanisms beside
version attributes to enable optimistic lock checking. However, support for such mechanisms is not
required of an implementation of this specifica{i’cﬁ}l.

If only some entities contain version attributes, the persistence provider runtime is required to check

those entities for which version attributes have been specified. The consistency of the object graph is not
guaranteed, but the absence of version attributes on some of the entities will not stop operations from
completing.

Lock Modes

In addition to the semantics described above, lock modes may be further specified by means of the
EntityManager lock method.

[17] Bulk update statements, however, are permitted to set the value of version attributes. See section 4.10
[18] Such additional mechanisms may be standardized by a future release of this specification

55 5/2/06

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Final Release Optimistic Locking and Concurrency

Two lock mode types are defineREADandWRITE

public enum LockModeType

READ,
WRITE

}

The semantics of requesting locks of typeckModeType.READ andLockModeType . WRITE are
the following.

If transaction T1 callsock(entity, LockModeType.READ) on a versioned object, the entity
manager must ensure that neither of the following phenomena can occur:

* P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back. Transaction T2 eventually
commits successfully; it does not matter whether T1 commits or rolls back and whether it does
so before or after T2 commits.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row.
Any such lock may be obtained immediately (so long as it is retained until commit completes), or the
lock may be deferred until commit time (although even then it must be retained until the commit com-
pletes). Any implementation that supports repeatable reads in a way that prevents the above phenomena
is permissible.

The persistence implementation is not required to support caldog(entity, LockMode-
Type.READ) on a non-versioned object. When it cannot support such a lock call, it must throw the
PersistenceException . When supported, whether for versioned or non-versioned objects,
LockModeType.READ must always prevent the phenomena P1 and P2. Applications that call
lock(entity, LockModeType.READ) on non-versioned objects will not be portable.

If transaction T1 callsock(entity, LockModeType.WRITE) on a versioned object, the entity
manager must avoid the phenomena P1 and P2 (ad.wikModeType.READ) and must also force

an update (increment) to the entity's version column. A forced version update may be performed imme-
diately, or may be deferred until a flush or commit. If an entity is removed before a deferred version
update was to have been applied, the forced version update is omitted, since the underlying database
row no longer exists.

The persistence implementation is not required to support caléog(entity, LockMode-
Type.WRITE) on a non-versioned object. When it cannot support a such lock call, it must throw the
PersistenceException . When supported, whether for versioned or non-versioned objects,
LockModeType.WRITE must always prevent the phenomena P1 and P2. For non-versioned objects,
whether or not ockModeType.WRITE has any additional behavior is vendor-specific. Applications
that calllock(entity, LockModeType.WRITE) on non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation td_es&ModeType.WRITE where
LockModeType.READ was requested, but not vice versa.

5/2/06

56

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Final Release Entity Operations

3.4.4

If a versioned object is otherwise updated or removed, then the implementation must ensure that the
requirements ofLockModeType.WRITE are met, even if no explicit call tEntityMan-
ager.lock was made.

For portability, an application should not depend on vendor-specific hints or configuration to ensure
repeatable read for objects that are not updated or removed via any mechanism ottientittyan
Manager.lock . However, it should be noted that if an implementation has acquired up-front pessi-
mistic locks on some database rows, then it is free to igndoek(entity,
LockModeType.READ) calls on the entity objects representing those rows.

OptimisticLockException

3.5

Provider implementations may defer writing to the database until the end of the transaction, when con-
sistent with the flush mode setting in effect. In this case, the optimistic lock check may not occur until
commit time, and theéDptimisticLockException may be thrown in the "before completion”
phase of the commit. If th®ptimisticLockException must be caught or handled by the appli-
cation, theflush method should be used by the application to force the database writes to occur. This
will allow the application to catch and handle optimistic lock exceptions.

The OptimisticLockException provides an API to return the object that caused the exception to

be thrown. The object reference is not guaranteed to be present every time the exception is thrown but
should be provided whenever the persistence provider can supply it. Applications cannot rely upon this
object being available.

In some cases a@ptimisticLockException will be thrown and wrapped by another exception,
such as &RemoteException , when VM boundaries are crossed. Entities that may be referenced in
wrapped exceptions should be Serializable so that marshalling will not fail.

An OptimisticLockException always causes the transaction to roll back.

Refreshing objects or reloading objects in a new transaction context and then retrying the transaction is
a potential response to @ptimisticLockException

Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifecycle
events.

A lifecycle callback method may be defined on an entity class, a mapped superclass, or an entity listener
class associated with an entity or mapped superclass. An entity listener class is a class whose methods
are invoked in response to lifecycle events on an entity. Any number of entity listener classes may be
defined for an entity class or mapped superclass.

Default entity listeners—entity listeners that apply to all entities in the persistence unit—can be speci-
fied by means of the XML descriptor.

57 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.5.1

Enterprise JavaBeans 3.0, Final Release Entity Listeners and Callback Methods

Lifecycle callback methods and entity listener classes are defined by means of metadata annotations or
the XML descriptor. When annotations are used, one or more entity listener classes are denoted using
the EntityListeners annotation on the entity class or mapped superclass. If multiple entity listen-
ers are defined, the order in which they are invoked is determined by the order in which they are speci-
fied in the EntityListeners annotation. The XML descriptor may be used as an alternative to
specify the invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations may be specified on an entity class, mapped superclass, or lis-
tener class. A single class may not have more than one lifecycle callback method for the same lifecycle
event. The same method may be used for multiple callback events.

Multiple entity classes and mapped superclasses in an inheritance hierarchy may define listener classes
and/or lifecycle callback methods directly on the class. Section 3.5.4 describes the rules that apply to
method invocation order in this case.

The entity listener class must have a public no-arg constructor.
Entity listeners are stateless. The lifecycle of an entity listener is unspecified.
The following rules apply to lifecycle callbacks:
» Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception
thrown by a callback method that executes within a transaction causes that transaction to be
rolled back.

* Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.

* In general, portable applications should not invélgityManager or Query operations,
access other entity instances, or modify relationships in a lifecycle callback rhéthod.

When invoked from within a Java EE environment, the callback listeners for an entity share the enter-
prise haming context of the invoking component, and the entity callback methods are invoked in the
transaction and security contexts of the calling component at the time at which the callback method is
invoked.[?°]

Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on an entity
class or mapped superclass.

Lifecycle callback methods are annotated with annotations designating the callback events for which
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations used for callback methods on the entity class or mapped superclass and for callback
methods on the entity listener class are the same. The signatures of individual methods, however, differ.

[19]
[20]

The semantics of such operations may be standardized in a future release of this specification.

For example, if a transaction commit occurs as a result of the normal termination of a session bean business methsaicwith tr
tion attributeRequiresNew , thePostPersist ~ andPostRemove callbacks are executed in the naming context, the transac-
tion context, and the security context of that component.

5/2/06

58

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Final Release Entity Operations

Callback methods defined on an entity class or mapped superclass have the following signature:
void <METHOD>()

Callback methods defined on an entity listener class have the following signature:

void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is invoked. It may be
declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must not be
static orfinal

The following annotations are defined to designate lifecycle event callback methods of the correspond-
ing types.

* PrePersist

* PostPersist

* PreRemove
* PostRemove
* PreUpdate

* PostUpdate

e PostLoad

3.5.2 Semantics of the Life Cycle Callback Methodsor Entities

ThePrePersist andPreRemove callback methods are invoked for a given entity before the respec-
tive EntityManager persist and remove operations for that entity are executed. For entities to which the
merge operation has been applied and causes the creation of newly managed instaRceRgethe

sist callback methods will be invoked for the managed instance after the entity state has been copied
to it. ThesePrePersist and PreRemove callbacks will also be invoked on all entities to which
these operations are cascaded. PnePersist andPreRemove methods will always be invoked

as part of the synchronous persist, merge, and remove operations.

ThePostPersist andPostRemove callback methods are invoked for an entity after the entity has

been made persistent or removed. These callbacks will also be invoked on all entities to which these
operations are cascaded. TRestPersist and PostRemove methods will be invoked after the
database insert and delete operations respectively. These database operations may occur directly after
the persist, merge, or remove operations have been invoked or they may occur directly after a flush oper-
ation has occurred (which may be at the end of the transaction). Generated primary key values are avail-
able in thePostPersist method.

59 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release Entity Listeners and Callback Methods

ThePreUpdate andPostUpdate callbacks occur before and after the database update operations to
entity data respectively. These database operations may occur at the time the entity state is updated or
they may occur at the time state is flushed to the database (which may be at the end of the transaction).

Note that it is implementation-dependent as to wheBretJpdate andPostUpdate call-

backs occur when an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

ThePostLoad method for an entity is invoked after the entity has been loaded into the current persis-
tence context from the database or after the refresh operation has been applied toRbsilead
method is invoked before a query result is returned or accessed or before an association is traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the cascad-
ing of the lifecycle events to related entities. Applications should not depend on this ordering.

5/2/06 60

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Final Release Entity Operations

3.5.3

Example

3.5.4

@Entity
@EntityListeners(com.acme.AlertMonitor.class)
public class Account {

Long accountld;
Integer balance;
boolean preferred;

@lId
public Long getAccountld() { ... }

5ﬁblic Integer getBalance() { ... }

@T.r.a.msient /I because status depends upon non-persistent context
public boolean isPreferred() { ... }

public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException {... }

@PrePersist
protected void validateCreate() {
if (getBalance() < MIN_REQUIRED_BALANCE)
throw new AccountException("Insufficient balance to open an
account™);

@PostLoad
protected void adjustPreferredStatus() {
preferred =
(getBalance() >= AccountManager.getPreferredStatu-
sLevel());
}

}

public class AlertMonitor {

@PostPersist
public void newAccountAlert(Account acct) {
Alerts.sendMarketingInfo(acct.getAccountld(), acct.getBal-
ance());

}

Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation of
these methods is as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listeners
apply to all entities in the persistence unit, unless explicitly excluded by means BithaedeDe-
faultListeners annotation oexclude-default-listeners XML element.

61 5/2/06

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Final Release Entity Listeners and Callback Methods

The lifecycle callback methods defined on the entity listener classes for an entity class or mapped super-
class are invoked in the same order as the specification of the entity listener classe€iithe
tyListeners annotation.

If multiple classes in an inheritance hierarchy—entity classes and/or mapped superclasses—define
entity listeners, the listeners defined for a superclass are invoked before the listeners defined for its sub-
classes in this order. ThExcludeSuperclassListeners annotation orexclude-super-
class-listeners XML element may be applied to an entity class or mapped superclass to exclude
the invocation of the listeners defined by the entity listener classes for the superclasses of the entity or
mapped superclass. The excluded listeners are excluded from the class to wiigbltieSuper-
classListeners annotation or element has been specified and its subcl3skEke ExcludeS-
uperclassListeners annotation (orexclude-superclass-listeners XML element)

does not cause default entity listeners to be excluded from invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one

or more of its entity or mapped superclasses, the callback methods on the entity class and/or super-
classes are invoked after the other lifecycle callback methods, most general superclass first. A class is
permitted to override an inherited callback method of the same callback type, and in this case, the over-
ridden method is not invokee?

Callback methods are invoked by the persistence provider runtime in the order specified. If the callback
method execution terminates normally, the persistence provider runtime then invokes the next callback
method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified in
annotations.

[21]

[22]

Excluded listeners may be reintroduced on an entity class by listing them explicitlyEntitytisteners annotation or
XML entity-listeners element.

Note that if a method overrides an inherited callback method but specifies a different lifecycle event or is not achftmaie
method, the overridden method will be invoked.

5/2/06

62

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Final Release Entity Operations

3.5.5 Example
There are several entity classes and listeners for animals:

@Entity
public class Animal {

@'PostPersist
protected void postPersistAnimal() {

}
}

@Entity
@EntityListeners(PetListener.class)
public class Pet extends Animal {

}

@Entity
@EntityListeners({CatListener.class, CatListener2.class})
public class Cat extends Pet {

}

public class PetListener {
@PostPersist
protected void postPersistPetListenerMethod(Object pet) {

}
}

public class CatListener {
@PostPersist
protected void postPersistCatListenerMethod(Object cat) {

}
}

public class CatListener2 {
@PostPersist
protected void postPersistCatListener2Method(Object cat) {

}
}

If a PostPersist event occurs on an instanceGHt , the following methods are called in order:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistAnimal

63 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release Entity Listeners and Callback Methods

Assume thaSiameseCat is defined as a subclass@t :

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postPersistSiameseCat() {
}
}
public class SiameseCatListener {
@PostPersist
protected void postPersistSiameseCatListenerMethod(Object cat) {
}
}
If a PostPersist event occurs on an instance®iimeseCat , the following methods are called in
order:

postPersistPetListenerMethod
postPersistCatlListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal
postPersistSiameseCat

Assume the definition ddiameseCat were instead:

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postPersistAnimal() {

}
}

In this case, the following methods would be called in order, wipergtPersistAnimal is the
PostPersist method defined in thBiameseCat class:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal

3.5.6 Exceptions

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be rolled back. No further lifecycle
callback methods will be invoked after a runtime exception is thrown.

5/2/06 64

Sun Microsystems, Inc.

Query API

3.5.7

Enterprise JavaBeans 3.0, Final Release Entity Operations

Specification of Callback Listener Classes and Lifecycle Methods in the XML

3.5.7.1

3.5.7.2

3.6

Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity listener
classes and their binding to entities or to override the invocation order of lifecycle callback methods as
specified in annotations.

Specification of Callback Listeners

Theentity-listener XML descriptor element is used to specify the lifecycle listener methods of
an entity listener class. The lifecycle listener methods are specified by usingrakgersist ,
post-persist , pre-remove , post-remove , pre-update , post-update , and/or

post-load elements.

At most one method of an entity listener class can be designated as a pre-persist method, post-persist
method, pre-remove method, post-remove method, pre-update method, post-update method, and/or
post-load method, regardless of whether the XML descriptor is used to define entity listeners or whether
some combination of annotations and XML descriptor elements is used.

Specification of the Binding of Entity Listener Classes to Entities
Theentity-listeners subelement of thpersistence-unit-defaults element is used to
specify the default entity listeners for the persistence unit.

Theentity-listeners subelement of thentity or mapped-superclass elementis used to
specify the entity listener classes for the respective entity or mapped superclass and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound to the
superclasses of an entity or mapped superclass are applied to it as well.

The exclude-superclass-listeners element specifies that the listener methods for super-
classes are not to be invoked for an entity class (or mapped superclass) and its subclasses.

The exclude-default-listeners element specifies that default entity listeners are not to be
invoked for an entity class (or mapped superclass) and its subclasses.

Explicitly listing an excluded default or superclass listener for a given entity class or mapped superclass
causes it to be applied to that entity or mapped superclass and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules described
in section 3.5.4 apply.

Query API

The Query API is used for both static queries (i.e., named queries) and dynamic queries. The Query
API also supports named parameter binding and pagination control.

65 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release

3.6.1 Query Interface

package javax.persistence;

import java.util.Calendar;
import java.util.Date;
import java.util.List;

/**

* Interface used to control query execution.
*/

public interface Query {

/**
* Execute a SELECT query and return the query results
* as a List.
* @return a list of the results
* @throws lllegalStateException if called for a Java
* Persistence query language UPDATE or DELETE statement
*
/
public List getResultList();

/**
* Execute a SELECT query that returns a single result.
* @return the result
* @throws NoResultException if there is no result
* @throws NonUniqueResultException if more than one result
* @throws lllegalStateException if called for a Java
* Persistence query language UPDATE or DELETE statement
*
/
public Object getSingleResult();

/**

* Execute an update or delete statement.

* @return the number of entities updated or deleted

* @throws lllegalStateException if called for a Java

* Persistence query language SELECT statement
* @throws TransactionRequiredException if there is

* no transaction

*/

public int executeUpdate();

/**

* Set the maximum number of results to retrieve.

* @param maxResult

* @return the same query instance

* @throws lllegalArgumentException if argument is negative
*

public Query setMaxResults(int maxResult);

/**

* Set the position of the first result to retrieve.

* @param start position of the first result, numbered from 0
* @return the same query instance

* @throws lllegalArgumentException if argument is negative
*/

public Query setFirstResult(int startPosition);

/**

Query API

5/2/06

66

Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Final Release Entity Operations

* Set an implementation-specific hint.
* If the hint name is not recognized, it is silently ignored.
* @param hintName
* @param value
* @return the same query instance
* @throws lllegalArgumentException if the second argument is not
* valid for the implementation
*
/
public Query setHint(String hintName, Object value);

/**
* Bind an argument to a named parameter.
* @param name the parameter name
* @param value
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
* or argument is of incorrect type
*
/
public Query setParameter(String name, Object value);

/**
* Bind an instance of java.util. Date to a named parameter.
* @param name
* @param value
* @param temporalType
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
*
/
public Query setParameter(String name, Date value, TemporalType
temporalType);

/**
* Bind an instance of java.util. Calendar to a named parameter.
* @param name
* @param value
* @param temporalType
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
*
/
public Query setParameter(String name, Calendar value, Temporal-
Type temporalType);

/**
* Bind an argument to a positional parameter.
* @param position
* @param value
* @return the same query instance
* @throws lllegalArgumentException if position does not
correspond to positional parameter of query
* or argument is of incorrect type
*
/
public Query setParameter(int position, Object value);

/**

* Bind an instance of java.util.Date to a positional parameter.

67 5/2/06

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Final Release Query API

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not
correspond to positional parameter of query

*/

public Query setParameter(int position, Date value, TemporalType
temporalType);

/**

* Bind an instance of java.util.Calendar to a positional param-
eter.

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not

correspond to positional parameter of query

*/

public Query setParameter(int position, Calendar value, Temporal-
Type temporalType);

/**

* Set the flush mode type to be used for the query execution.
* The flush mode type applies to the query regardless of the
* flush mode type in use for the entity manager.
* @param flushMode
*

/

public Query setFlushMode(FlushModeType flushMode);

The elements of the result of a Java Persistence query whose SELECT clause consists of more than one
select expression are of ty@bject[] . If the SELECT clause consists of only one select expression,

the elements of the query result are of typleject . When native SQL queries are used, the SQL result

set mapping (see section 3.6.6), determines how many items (entities, scalar values, etc.) are returned. If
multiple items are returned, the elements of the query result are ofQpect]] . If only a single

item is returned as a result of the SQL result set mapping or if a result class is specified, the elements of
the query result are of tyfigbject .

An lllegalArgumentException is thrown if a parameter name is specified that does not corre-
spond to a hamed parameter in the query string, if a positional value is specified that does not corre-
spond to a positional parameter in the query string, or if the type of the parameter is not valid for the
query. This exception may be thrown when the parameter is bound, or the execution of the query may
fail.

The effect of applyingetMaxResults or setFirstResult to a query involving fetch joins over
collections is undefined.

Query methods other than te&ecuteUpdate method are not required to be invoked within a trans-
action context. In particular, thgetResultList and getSingleResult methods are not
required to be invoked within a transaction context. If an entity manager with transaction-scoped persis-
tence context is in use, the resulting entities will be detached; if an entity manager with an extended per-
sistence context is used, they will be managed. See Chapter 5 for further discussion of entity manager
use outside a transaction and persistence context types.

5/2/06

68

Sun Microsystems, Inc.

Query API

3.6.1.1

3.6.2

Enterprise JavaBeans 3.0, Final Release Entity Operations

Runtime exceptions other than tiNoResultException and NonUniqueResultException
thrown by the methods of tifguery interface cause the current transaction to be rolled back.

Example

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

Queries and FlushMode

3.6.3

The flush mode setting affects the result of a query as follows.

When queries are executed within a transactiorfzlifshModeType. AUTO is set on the Query
object, or if the flush mode setting for the persistence conteiti$O(the default) and a flush mode
setting has not been specified for Qaery object, the persistence provider is responsible for ensuring
that all updates to the state of all entities in the persistence context which could potentially affect the
result of the query are visible to the processing of the query. The persistence provider implementation
may achieve this by flushing those entities to the database or by some other mé&dnshMode-
Type.COMMIT is set, the effect of updates made to entities in the persistence context upon queries is
unspecified.

public enum FlushModeType {
COMMIT,
AUTO

}

If there is no transaction active, the persistence provider must not flush to the database.

Named Parameters

3.6.4

A named parameter is an identifier that is prefixed by tHesymbol. Named parameters are case-sen-
sitive.

Named parameters follow the rules for identifiers defined in Section 4.4.1. The use of named parameters
applies to the Java Persistence query language, and is not defined for native queries. Only positional
parameter binding may be portably used for native queries.

The parameter names passed togatParameter methods of theQuery API do not include the

" " prefix.

Named Queries

Named queries are static queries expressed in metadata. Named queries can be defined in the Java Per-
sistence query language or in SQL. Query names are scoped to the persistence unit.

69 5/2/06

Sun Microsystems, Inc.

Entity Operations

3.6.5

Enterprise JavaBeans 3.0, Final Release Query API

The following is an example of the definition of a named query:

@NamedQuery(
name="findAllCustomersWithName",
query="SELECT ¢ FROM Customer c WHERE c.name LIKE :custName"

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;

customers = em.createNamedQuery("findAllCustomersWithName")

.setParameter("custName", "Smith")
.getResultList();

Polymorphic Queries

3.6.6

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query Rditions.
For example, the query

select avg(e.salary) from Employee e where e.salary > 80000

returns the average salary of all employees, including subtypEsmpfoyee , such asManager and

Exempt .

SOQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities, sca-
lar values, or a combination of the two. The entities returned by a query may be of different entity

types.

The SQL query facility is intended to provide support for those cases where it is necessary to
use the native SQL of the target database in use (and/or where the Java Persistence query lan-
guage cannot be used). Native SQL queries are not expected to be portable across databases.

When multiple entities are returned by a SQL query, the entities must be specified and mapped to the
column results of the SQL statement ir5glResultSetMapping metadata definition. This result

set mapping metadata can then be used by the persistence provider runtime to map the JDBC results
into the expected objects. See Section 8.3.3 for the definition @dlResultSetMapping meta-

data annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form may be used and
SqlResultSetMapping metadata is not required.

[23] Constructs to restrict query polymorphism will be considered in a future release.

5/2/06

70

Sun Microsystems, Inc.

Query API

Enterprise JavaBeans 3.0, Final Release Entity Operations

This is illustrated in the following example in which a native SQL query is created dynamically using
thecreateNativeQuery method and the entity class that specifies the type of the result is passed in
as an argument.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
com.acme.Order.class);

When executed, this query will return a Collection of all Order entities for items named "widget". The
same results could also be obtained uSigiResultSetMapping

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
"WidgetOrderResults");
In this case, the metadata for the query result type might be specified as follows:

@SqlResultSetMapping(name="WidgetOrderResults",
entities=@EntityResult(entityClass=com.acme.Order.class))

The following query andSglResultSetMapping metadata illustrates the return of multiple entity
types and assumes default metadata and column name defaults.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Iltem i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={
@EntityResult(entityClass=com.acme.Order.class),
@EntityResult(entityClass=com.acme.ltem.class)

)

When an entity is being returned, the SQL statement should select all of the columns that are mapped to
the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined. A SQL result set mapping must not be used to map
results to the non-persistent state of an entity.

The column names that are used in the SQL result set mapping annotations refer to the names of the col-
umns in the SQL SELECT clause. Note that column aliases must be used in the SQL SELECT clause
where the SQL result would otherwise contain multiple columns of the same name.

71 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release Query API

An example of combining multiple entity types and that includes aliases in the SQL statement requires
that the column names be explicitly mapped to the entity fields FidldResult annotation is used
for this purpose.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_qguantity > 25) AND (order_item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item")}),

@EntityResult(entityClass=com.acme.ltem.class)

)

Scalar result types can be included in the query result by specifyingdhennResult annotation in
the metadata.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.name AS item_name, " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderResults");

@SglResultSetMapping(name="0OrderResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item™")})},

columns={

@ColumnResult(name="item_name")}
)

When the returned entity type is the owner of a single-valued relationship and the foreign key is a com-
posite foreign key (composed of multiple columnskieldResult element should be used for each

of the foreign key columns. ThHeieldResult element must use a dot (*) notation form to indicate

which column maps to each property or field of the target entity primary key. The dot-notation form

described below is not required to be supported for any usage other than for composite foreign keys or
embedded primary keys.

If the target entity has a primary key of typ#Class , this specification takes the form of the name of
the field or property for the relationship, followed by a dat'{); followed by the name of the field or

property of the primary key in the target entity. The latter will be annotatedldithas specified in sec-
tion 9.1.15.

5/2/06

12

Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Final Release

Example:

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item_id AS order_item_id, " +
"o.item_name AS order_item_name, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
"OrderltemResults");

@SqlResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item.id", column="order_item_id")}),
@FieldResult(hame="item.name",

column="order_item_name")}),
@EntityResult(entityClass=com.acme.ltem.class)

)

Entity Operations

If the target entity has a primary key of typgnbeddedId , this specification is composed of the name
of the field or property for the relationship, followed by a dot'fj; followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotatéardeddedld), fol-
lowed by the name of the corresponding field or property of the embedded primary key class.

Example:

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item_id AS order_item_id, " +
"o.item_name AS order_item_name, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
"OrderltemResults");

@SqlResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item.itemPk.id",

column="order_item_id"}),
@FieldResult(name="item.itemPk.name",
column="order_item_name")}),

@EntityResult(entityClass=com.acme.ltem.class)

)

73

5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release Summary of Exceptions

The FieldResult elements for the composite foreign key are combined to form the primary key
Embeddedld class for the target entity. This may then be used to subsequently retrieve the entity if
the relationship is to be eagerly loaded.

The use of named parameters is not defined for native queries. Only positional parameter binding for
SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.

3.7 Summary of Exceptions

The following is a summary of the exceptions defined by this specification:
PersistenceException

The PersistenceException is thrown by the persistence provider when a problem
occurs. It may be thrown to report that the invoked operation could not complete because of an
unexpected error (e.g., failure of the persistence provider to open a database connection).

All other exceptions defined by this specification are subclasses d?dlsstenceEx-
ception . All instances ofPersistenceException except for instances dNoRe-
SultException andNonUniqueResultException will cause the current transaction,
if one is active, to be marked for rollback.

TransactionRequiredException

The TransactionRequiredException is thrown by the persistence provider when a
transaction is required but is not active.

OptimisticLockException
The OptimisticLockException is thrown by the persistence provider when an optimis-
tic locking conflict occurs. This exception may be thrown as part of an API call, at flush, or at
commit time. The current transaction, if one is active, will be marked for rollback.

RollbackException

The RollbackException is thrown by the persistence provider whEntityTrans-
action.commit fails.

EntityExistsException
The EntityExistsException may thrown by the persistence provider when plee-
sist operation is invoked and the entity already exists. EméityExistsException
may be thrown when the persist operation is invoked, oEthigyExistsException or
anotherPersistenceException may be thrown at commit time.

EntityNotFoundException

5/2/06 74

Sun Microsystems, Inc.

Summary of Exceptions

Enterprise JavaBeans 3.0, Final Release Entity Operations

The EntityNotFoundException is thrown by the persistence provider when an entity
reference obtained bgetReference is accessed but the entity does not exist. It is also
thrown by therefresh operation when the entity no longer exists in the database. The cur-
rent transaction, if one is active, will be marked for rollback.

NoResultException

The NoResultException is thrown by the persistence provider wh@oery.getSin-
gleResult is invoked and there is no result to return. This exception will not cause the cur-
rent transaction, if one is active, to be marked for roll back.

NonUniqueResultException

The NonUnigueResultException is thrown by the persistence provider when
Query.getSingleResult is invoked and there is more than one result from the query.

This exception will not cause the current transaction, if one is active, to be marked for roll
back.

75 5/2/06

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Final Release Summary of Exceptions

5/2/06 76

Sun Microsystems, Inc.

Overview Enterprise JavaBeans 3.0, Final Release Query Language

aaers QUErNY Language

The Java Persistence query language is used to define queries over entities and their persistent state. It
enables the application developer to specify the semantics of queries in a portable way, independent of
the particular database in use in an enterprise environment.

The Java Persistence query language is an extension of the Enterprise JavaBeans query language, EJB
QL, defined in [5]. It adds further operations, including bulk update and delete, JOIN operations,
GROUP BY, HAVING, projection, and subqueries; and supports the use of dynamic queries and the use
of named parameters. The full range of the language may be used in both static and dynamic queries.

This chapter provides the full definition of the language.

4.1 Overview

The Java Persistence query language is a query specification language for dynamic queries and for static
gueries expressed through metadata. It is used to define queries over the persistent entities defined by
this specification and their persistent state and relationships.

77 5/2/06

Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Final Release Statement Types

The Java Persistence query language can be compiled to a target language, such as SQL, of a database
or other persistent store. This allows the execution of queries to be shifted to the native language facili-
ties provided by the database, instead of requiring queries to be executed on the runtime representation
of the entity state. As a result, query methods can be optimizable as well as portable.

The query language uses the abstract persistence schemas of entities, including their relationships, for
its data model, and it defines operators and expressions based on this data model. It uses a SQL-like
syntax to select objects or values based on entity abstract schema types and relationships among them. It
is possible to parse and validate queries before entities are deployed.

The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which Java Persistence queries operate. Que-
ries over this persistent schema abstraction are translated into queries that are executed over
the database schema to which entities are mapped. See Section 4.3.

Queries may be defined in metadata annotations or the XML descriptor. The abstract schema types of a
set of entities can be used in a query if the entities are defined in the same persistence unit as the query.
Path expressions allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be colocated in their mapping to a single database.

4.2 Statement Types

A Java Persistence query language statement may be either a select statement, an update statement, or a
delete statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, a query language statement is defined as:
QL_statement :: = select_statement | update statement | delete_statement

Any Java Persistence query language statement may be constructed dynamically or may be statically
defined in a metadata annotation or XML descriptor element.

All statement types may have parameters.

4.2.1 Select Statements

A select statement is a string which consists of the following clauses:

* a SELECT clause, which determines the type of the objects or values to be selected.

5/2/06 78

Sun Microsystems, Inc.

Abstract Schema Types and Query Domains Enterprise JavaBeans 3.0, Final Release Query Language

4.2.2

* a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the other clauses of the query apply.

* an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

* an optional GROUP BY clause, which allows query results to be aggregated in terms of
groups.

* an optional HAVING clause, which allows filtering over aggregated groups.

* an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, a select statement is defined as:

select_statement :: = select _clause from_clause [where_clause] [groupby clause]
[having_clause] [orderby clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate
that the other clauses are optional.

Update and Delete Statements

4.3

Update and delete statements provide bulk operations over sets of entities.
In BNF syntax, these operations are defined as:

update_statement :: = update _clause [where_clause]

delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.10.

Abstract Schema Types and Query Domains

The Java Persistence query language is a typed language, and every expression has a type. The type of
an expression is derived from the structure of the expression, the abstract schema types of the identifica-
tion variable declarations, the types to which the persistent fields and relationships evaluate, and the
types of literals.

The abstract schema type of an entity is derived from the entity class and the metadata information pro-
vided by Java language annotations or in the XML descriptor.

79 5/2/06

Sun Microsystems, Inc.

Query Language

4.3.1

Enterprise JavaBeans 3.0, Final Release Abstract Schema Types and Query Domains

Informally, the abstract schema type of an entity can be characterized as follows:

* For every persistent field or get accessor method (for a persistent property) of the entity class,
there is a field (“state-field”) whose abstract schema type corresponds to that of the field or the
result type of the accessor method.

* For every persistent relationship field or get accessor method (for a persistent relationship
property) of the entity class, there is a field (“association-field”) whose type is the abstract
schema type of the related entity (or, if the relationship is a one-to-many or many-to-many, a
collection of such).

Abstract schema types are specific to the query language data model. The persistence provider is not
required to implement or otherwise materialize an abstract schema type.

The domain of a query consists of the abstract schema types of all entities that are defined in the same
persistence unit.

The domain of a query may be restricted by tiaigability of the relationships of the entity on which it

is based. The association-fields of an entity’s abstract schema type determine navigability. Using the
association-fields and their values, a query can select related entities and use their abstract schema types
in the query.

Naming

4.3.2

Entities are designated in query strings by their entity names. The entity name is definechaynthe
element of theEntity — annotation (or thentity-name XML descriptor element), and defaults to

the unqualified name of the entity class. Entity names are scoped within the persistence unit and must be
unique within the persistence unit.

Example

This example assumes that the application developer provides several entity classes, representing
orders, products, line items, shipping addresses, and billing addresses. The abstract schema types for
these entities ar®©rder , Product , Lineltem , ShippingAddress , and BillingAddress

respectively. These entities are logically in the same persistence unit, as shown in Figure 1.

Figure 1

Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit.

The entitiesShippingAddress andBillingAddress each have one-to-many relationships with
Order . There is also a one-to-many relationship betw&mer and Lineitem . The entity
Lineltem s related td’roduct in a many-to-one relationship.

5/2/06

80

Sun Microsystems, Inc.

Abstract Schema Types and Query Domains Enterprise JavaBeans 3.0, Final Release Query Language

1

Shipping Billing
Address Address

Queries to select orders can be defined by navigating over the association-fields and state-fields defined
by Order andLineltem . A query to find all orders with pending line items might be written as fol-
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineltems AS |
WHERE l.shipped = FALSE

This query navigates over the association-flalditems of the abstract schema ty@der to find
line items, and uses the state-fishipped of Lineltem to select those orders that have at least one
line item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although predefined reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to beCufdgpe

Because the same persistence unit defines the abstract persistence schemas of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state-fields and association-fields of both the abstract schem®tgpesand Product .

For example, if the abstract schema typ®duct has a state-field namemoductType , a query

over orders can be specified using this state-field. Such a query might be to find all orders for products
with product type office supplies. A query for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

Becausérder is related tdProduct by means of the relationships betwe@rder andLineltem

and betweerLineltem and Product , navigation using the association-fieltiseltems and
product is used to express the query. This query is specified by using the abstract schema name
Order , which designates the abstract schema type over which the query ranges. The basis for the navi-
gation is provided by the association-field®eltems andproduct of the abstract schema types
Order andLineltem respectively.

81 5/2/06

Sun Microsystems, Inc.

Query Language

4.4

Enterprise JavaBeans 3.0, Final Release The FROM Clause and Navigational Declara-

The FROM Clause and Navigational Declarations

44.1

The FROM clause of a query defines the domain of the query by declaring identification variables. An
identification variable is an identifier declared in the FROM clause of a query. The domain of the query
may be constrained by path expressions.

Identification variables designate instances of a particular entity abstract schema type. The FROM
clause can contain multiple identification variable declarations separated by a gomma (

from clause ::=

FROM identification_variable declaration

{, {identification_variable _declaration | collection_member_declaration}}*

identification_variable _declaration ::= range_variable declaration { join | fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
jJoin ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path _expression
Join_association_path_expression ::= join_collection_valued _path_expression |

Join_single _valued_association_path_expression
join_spec::= [LEFT [OUTER] [INNER] JOIN
collection_member_declaration ::=

IN (collection_valued _path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the metlibdiracter.isJavaldentifierStart

returns true. This includes the underscorg ¢haracter and the dollar sigh)(character. An identifier

part character is any character for which the meti@thracter.isJavaldentifierPart

returns true. The question mark)(character is reserved for use by the Java Persistence query language.

The following are reserved identifielSELECTFROM, WHERE, UPDATE, DELETE, JOIN, OUTER,
INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINGIBJECT, NULL TRUE FALSE NOT,

AND, OR BETWEEN LIKE, IN, AS UNKNOWN?4, EMPTY, MEMBER, OF, IS, AVG, MAX, MIN,
SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSITION,
CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, SOME

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables.

It is recommended that other SQL reserved words also not be as identification variables in
gueries because they may be used as reserved identifiers in future releases of this specification.

[24] Not currently used; reserved for future use.

5/2/06

82

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Final Release Query Language

4.4.2

Identification Variables

4.4.3

An identification variable is a valid identifier declared in the FROM clause of a query.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any entity in the
same persistence unit:

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

In the FROM clause declaratioo.lineltems | , the identification variabld evaluates to any
Lineltem value directly reachable fro@rder . The association-fielineltems is a collection of
instances of the abstract schema tijpeeltem and the identification variable refers to an element
of this collection. The type df is the abstract schema typeLafeltem

An identification variable ranges over the abstract schema type of an entity. An identification variable
designates an instance of an entity abstract schema type or an element of a collection of entity abstract
schema type instances. Identification variables are existentially quantified in a query.

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The identi-
fication variable declarations are evaluated from left to right in the FROM clause, and an identification

variable declaration can use the result of a preceding identification variable declaration of the query
string.

Range \ariable Declarations

The syntax for declaring an identification variable as a range variable is similar to that of SQL; option-
ally, it uses the AS keyword.

range_variable _declaration ::= abstract schema_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

83 5/2/06

Sun Microsystems, Inc.

Query Language

4.4.4

Enterprise JavaBeans 3.0, Final Release The FROM Clause and Navigational Declara-

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of the
abstract schema typerder . The SELECT clause of this query determines that it is the orders with
guantities larger than John Smith’s that are returned.

SELECT DISTINCT ol

FROM Order o1, Order 02

WHERE o1l.quantity > 02.quantity AND
02.customer.lastname = ‘Smith’ AND
02.customer.firstname= ‘John’

Path Expressions

An identification variable followed by the navigation operatoy&nd a state-field or association-field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state-field or association-field to which the expression navigates.

Depending on navigability, a path expression that leads to a association-field may be further composed.
Path expressions can be composed from other path expressions if the original path expression evaluates
to a single-valued type (not a collection) corresponding to a association-field.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal association-field in the path expression is null, the path is considered to have no value, and does
not participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follows:

single_valued_path_expression ::=

state_field _path_expression [single_valued _association_path _expression
state_field _path_expression ::=

{identification _variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}*single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single _valued _association _field.}*collection_valued_association_field
state_field ::= {embedded class state field.}*simple_state field

A single_valued_association_field is designated by the name of an association-field in a one-to-one or
many-to-one relationship. The type of asingle valued association field and thus a
single_valued_association_path_expression is the abstract schema type of the related entity.

A collection_valued_association_field is designated by the name of an association-field in a
one-to-many or a many-to-many relationship. The type afiection_valued_association_field is a col-
lection of values of the abstract schema type of the related entity.

An embedded_class_state _field is designated by the name of an entity state field that corresponds to an
embedded class.

Navigation to a related entity results in a value of the related entity’s abstract schema type.

5/2/06

84

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Final Release Query Language

I

The evaluation of a path expression terminating in a state-field results in the abstract schema type corre-
sponding to the Java type designated by the state-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, ifo designate©rder , the path expressioo.lineltems.product is illegal

since navigation tdineltems results in a collection. This case should produce an error when the
query string is verified. To handle such a navigation, an identification variable must be declared in the
FROM clause to range over the elements ofltheltems collection. Another path expression must

be used to navigate over each such element in the WHERE clause of the query, as in the following:

SELECT DISTINCT l.product
FROM Order AS o, IN(o.lineltems) |

Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:

select ¢ from Customer ¢, Employee e where c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over entity relationships.

The syntax for explicit join operations is as follows:

Join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

Join_association_path _expression ::= join_collection_valued _path_expression |
Join_single _valued_association_path_expression

join_spec::= [LEFT [OUTER] [INNER] JOIN

The following inner and outer join operation types are supported.

4.4.5.1 Inner Joins (Relationship Joins)

The syntax for the inner join operation is
[INNER] JOIN join_association_path_expression [AS] identification variable

For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.

SELECT ¢ FROM Customer ¢ JOIN c.orders o WHERE c.status = 1

85 5/2/06

Sun Microsystems, Inc.

Query Language

4.45.2

4453

Enterprise JavaBeans 3.0, Final Release The FROM Clause and Navigational Declara-

The keyword INNER may optionally be used:

SELECT ¢ FROM Customer ¢ INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [5]. It selects those
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1

Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities
where matching values in the join condition may be absent.

The syntax for a left outer join is
LEFT [OUTER] JOIN join_association_path_expression [AS] identification variable
For example:

SELECT ¢ FROM Customer ¢ LEFT JOIN c.orders o WHERE c.status = 1

The keyword OUTER may optionally be used:

SELECT ¢ FROM Customer ¢ LEFT OUTER JOIN c.orders o WHERE c.status = 1

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

Fetch Joins
A FETCH JOIN enables the fetching of an association as a side effect of the execution of a query. A
FETCH JOIN is specified over an entity and its related entities.

The syntax for a fetch join is
fetch_join ::= [LEFT [OUTER][INNER] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an association that
belongs to an entity that is returned as a result of the query. It is not permitted to specify an identifica-
tion variable for the entities referenced by the right side of the FETCH JOIN clause, and hence refer-
ences to the implicitly fetched entities cannot appear elsewhere in the query.

The following query returns a set of departments. As a side effect, the associated employees for those
departments are also retrieved, even though they are not part of the explicit query result. The persistent
fields or properties of the employees that are eagerly fetched are fully initialized. The initialization of
the relationship properties of the employees that are retrieved is determined by the metadata for the
Employee entity class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno =1

5/2/06

86

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Final Release Query Language

4.4.6

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related
objects specified on the right-hand side of the join operation are not returned in the query result or oth-
erwise referenced in the query. Hence, for example, if department 1 has five employees, the above query
returns five references to the department 1 entity.

Collection Member Declarations

4.4.7

An identification variable declared byaollection_member_declaration ranges over values of a col-

lection obtained by navigation using a path expression. Such a path expression represents a navigation
involving the association-fields of an entity abstract schema type. Because a path expression can be
based on another path expression, the navigation can use the association-fields of related entities.

An identification variable of a collection member declaration is declared using a special operator, the

reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path

expression evaluates to a collection type specified as a result of navigation to a collection-valued associ-
ation-field of an entity abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued _path_expression) [AS] identification_variable

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

may equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(0.lineltems) |
WHERE l.product.productType = ‘office_supplies’

In this example lineltems is the name of an association-field whose value is a collection of
instances of the abstract schema tipeeltem . The identification variable designates a member of
this collection, asingleLineltem abstract schema type instance. In this examplés an identifica-
tion variable of the abstract schema t{jreler .

FROM Clause and SQL

The Java Persistence query language treats the FROM clause similarly to SQL in that the declared iden-
tification variables affect the results of the query even if they are not used in the WHERE clause. Appli-
cation developers should use caution in defining identification variables because the domain of the
qguery can depend on whether there are any values of the declared type.

87 5/2/06

Sun Microsystems, Inc.

Query Language

4.4.8

Enterprise JavaBeans 3.0, Final Release WHERE Clause

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are nBroduct instances in the database, the domain of the query is empty and no
order is selected.

SELECT o
FROM Order AS o, IN(o.lineltems) |, Product p

Polymorphism

4.5

Java Persistence queries are automatically polymorphic. The FROM clause of a query designates not
only instances of the specific entity class(es) to which explicitly refers but of subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the queﬁ%ﬂ:riteria.

WHERE Clause

4.6

The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.

The syntax of the HAVING clause is as follows:

having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.7.

Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expression of
the WHERE clause or HAVING clause.

State-fields that are mapped in serialized form or as lobs may not be portably used in condi-
tional expressiort€®!.

[25] Such query polymorphism does not apply to EJB 2.1 entity beans, since they do not support inheritance.
[26] The implementation is not expected to perform such query operations involving such fields in memory rather than in the database.

5/2/06

88

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Final Release Query Language

4.6.1

Literals

4.6.2

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
guote is represented by two single quotes—for example: ‘literal’s’. String literals in queries, like Java
String literals, use unicode character encoding. The use of Java escape notation is not supported in
query string literals

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric literal
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approximate
numeric literal syntax.

Enum literals support the use of Java enum literal syntax. The enum class name must be specified.
Appropriate suffixes may be used to indicate the specific type of a numeric literal in accordance with the
Java Language Specification. Support for the use of hexadecimal and octal numeric literals is not
required by this specification.

The boolean literals alBRUEandFALSE

Although predefined reserved literals appear in upper case, they are case insensitive.

Identification Variables

4.6.3

All identification variables used in the WHERE or HAVING clause of a SELECT or DELETE state-
ment must be declared in the FROM clause, as described in Section 4.4.2. The identification variables
used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means that

an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.

Path Expressions

4.6.4

Itis illegal to use acollection_valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in anempty collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.

Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not be mixed
in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

89 5/2/06

Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Final Release Conditional Expressions

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.11.

4.6.4.1 Positional Parameters
The following rules apply to positional parameters.

* Input parameters are designated by the question n¥grkrefix followed by an integer. For
example?1.

* Input parameters are numbered starting from 1.

Note that the same parameter can be used more than once in the query string and that the
ordering of the use of parameters within the query string need not conform to the order of the
positional parameters.

4.6.4.2 Named Parameters
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identifiers
defined in Section 4.4.1. Named parameters are case sensitive.

Example:

SELECT ¢
FROM Customer ¢
WHERE c.status = :stat

Section 3.6.1 describes the API for the binding of named query parameters.

4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input param-
eters.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are composed of
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric values,
numeric literals, and numeric input parameters.

Arithmetic operations use numeric promotion.
Standard bracketing for ordering expression evaluation is supported.
Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional _term
conditional_term ::= conditional _factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression [(conditional_expression)
simple_cond_expression ::=

comparison_expression |

5/2/06 90

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Final Release Query Language

between_expression |

like_expression |

in_expression |
null_comparison_expression |
empty_collection _comparison_expression |
collection_member_expression |
exists_expression

Aggregate functions can only be used in conditional expressions in a HAVING clause. See section 4.7.

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
* Navigation operator. ()

* Arithmetic operators:
+, - unary
* [multiplication and division
+, - addition and subtraction

e Comparison operators=, >, >=, <, <=, <> (not equal),[NOT] BETWEEN [NOT] LIKE ,
[NOT]IN ,IS[NOT] NULL , IS[NOT] EMPTY, [NOT] MEMBER [OF]

* Logical operators:
NOT
AND
OR

The following sections describe other operators used in specific expressions.

4.6.7 BetweenExpressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

The BETWEEN expression

X BETWEEN Yy AND z

91 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release Conditional Expressions

is semantically equivalent to:

y<=XxAND x <=2z

The rules for unknown and NULL values in comparison operations apply. See Section 4.11.
Examples are:

p.age BETWEEN 15 and 19 is equivalent tgp.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent tg.age < 15 OR p.age > 19

4.6.8 In Expressions
The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:
in_expression ::=

state_field _path_expression [NOT]IN (in_item {, in_item}* [subquery)

in_item ::= literal | input_parameter
The state_field_path_expression must have a string, humeric, or enum value.
The literal and/or input_parameter values must k@ the same abstract schema type of the
state_field_path_expression in type. (See Section 4.12).
The results of the subquery must be like the same abstract schema type of the
state_field_path_expression in type. Subqgueries are discussed in Section 4.6.15, “Subqueries”.
Examples are:
o.country IN (UK’, 'US’, 'France’) is true forUKand false folPeru , and is equivalent
to the expressiofo.country = 'UK’) OR (o.country = 'US’) OR (o.country =’
France’)
o.country NOT IN (UK’, 'US’, 'France’) is false forUK and true forPeru , and is
equivalent to the expressioNOT ((o.country = 'UK’) OR (o.country = 'US’) OR
(o.country = France’))
There must be at least one element in the comma separated list that defines the set of valud for the
expression.
If the value of astate field_path_expression in an IN or NOT IN expression iBlULL or unknown, the
value of the expression is unknown.

4.6.9 Lik e Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

5/2/06

92

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Final Release Query Language

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
The string_expression must have a string value. Thettern_value is a string literal or a string-valued
input parameter in which an underscoré 6tands for any single character, a percéft ¢haracter
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optionascape character is a single-character string literal or a character-valued
input parameter (i.eghar or Character) and is used to escape the special meaning of the under-
score and percent charactergatern_value.[27]
Examples are:

* address.phone LIKE ‘12%3s true for ‘123’ ‘12993’ and false for ‘1234’

* asentence.word LIKE ‘l_sés true for ‘lose’ and false for ‘loose’

* aword.underscored LIKE _%’' ESCAPE f§ true for *_foo’ and false for ‘bar’

* address.phone NOT LIKE ‘12% false for ‘123’ and ‘12993’ and true for ‘1234’
If the value of thestring_expression or pattern_value is NULL or unknown, the value of the LIKE

expression is unknown. If thescape_character is specified and iSIULL, the value of the LIKE expres-
sion is unknown.

4.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:
{single_valued_path_expression [input_parameter }1S [NOT]NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter
is aNULL value.

4.6.11 Empty Collection Comparison Expressions

The syntax for the wuse of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

[27] Refer to [4] for a more precise characterization of these rules.

93 5/2/06

Sun Microsystems, Inc.

Query Language

4.6.12

Enterprise JavaBeans 3.0, Final Release Conditional Expressions

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:
SELECT o

FROM Order o
WHERE o.lineltems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

Collection Member Expressions

4.6.13

The syntax for the wuse of the comparison operator MEMBER 2HF in an
collection_member_expression is as follows:

entity_expression [NOT] MEMBER [OF] collection_valued path _expression
entity_expression ::=

single_valued_association_path _expression | simple_entity expression
simple_entity _expression ::=

identification_variable |

input_parameter

This expression tests whether the designated value is a member of the collection specified by the collec-
tion-valued path expression.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection-valued path expression or single-valued association-field path expression in the
collection member expression MULL or unknown, the value of the collection member expression is
unknown.

Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.

The syntax of an exists expression is

exists_expression::= [NOT] EXISTS (subquery)

[28] The use of the reserved word OF is optional in this expression.

5/2/06

94

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Final Release Query Language

4.6.14

Example:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

All or Any Expr essions

4.6.15

An ALL conditional expression is a predicate that is true if the comparison operation is true for all val-

ues in the result of the subquery or the result of the subquery is empty. An ALL conditional expression
is false if the result of the comparison is false for at least one row, and is unknown if neither true nor
false.

An ANY conditional expression is a predicate that is true if the comparison operation is true for some
value in the result of the subquery. An ANY conditional expression is false if the result of the subquery
is empty or if the comparison operation is false for every value in the result of the subquery, and is
unknown if neither true nor false. The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>, The
result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.12.

The syntax of an ALL or ANY expression is specified as follows:
all_or_any expression ::= { ALL [ANY | SOME} (subquery)
Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

Subqueries

Subqueries may be used in the WHERE or HAVING cldtie.
The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery from_clause [where_clause]

[29]

Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause will be
considered in a later release of this specification.

95 5/2/06

Sun Microsystems, Inc.

Query Language

4.6.16

Enterprise JavaBeans 3.0, Final Release Conditional Expressions

[groupby clause] [having clause]
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
subquery from_clause ::=
FROM subselect identification variable declaration
{, subselect _identification _variable declaration}*
subselect_identification_variable_declaration ::=
identification_variable _declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple_select_expression::=
single_valued_path _expression |
aggregate_expression |
identification_variable

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

SELECT ¢
FROM Customer c
WHERE (SELECT COUNT(0) FROM c.orders 0) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery
(i.e., produce a single result). This is illustrated in the following example involving a hnumeric compari-
son operation.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT avg(c.balanceOwed) FROM Customer c)

Functional Expressions

4.6.16.1

The Java Persistence query language includes the following built-in functions, which may be used in the
WHERE or HAVING clause of a query.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,
simple_arithmetic_expression, simple_arithmetic_expression) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |

5/2/06

96

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Final Release Query Language

4.6.16.2

LOWER(string_primary) |
UPPER(String_primary)
trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(Sstring_primary, string_primary[, simple_arithmetic _expression)) |

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The first position of a string is denoted by 1.
The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it is assumed to be space (or blank). The optiinalcharacter is a single-character string
literal or a character-valued input parameter (char or Character)[30]. If a trim specification is

not provided, BOTH is assumed. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively. They return a
string.

The LOCATE function returns the position of a given string within a string, starting the search at a spec-
ified position. It returns the first position at which the string was found as an integer. The first argument
is the string to be located; the second argument is the string to be searched; the optional third argument
is an integer that represents the string position at which the search is started (by default, the beginning of
the string to be searched). The first position in a string is denoted by 1. If the string is not found, 0 is
returned%l]

The LENGTH function returns the length of the string in characters as an integer.

Arithmetic Functions

functions_returning_numerics::=
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path _expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.

[30]

(31]

Note that not all databases support the use of a trim character other than the space character; use of this argsulent may re
queries that are not portable.

Note that not all databases support the use of the third argument to LOCATE; use of this argument may result intcareries tha
not portable.

97 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release GROUP BY, HAVING

The MOD function takes two integer arguments and returns an integer.

The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

4.6.16.3 Datetime Functions

4.7

functions_returning_datetime:=
CURRENT_DATE |
CURRENT_TIME [
CURRENT_TIMESTAMP

The datetime functions return the value of current date, time, and timestamp on the database server.

GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The HAV-
ING construct enables conditions to be specified that further restrict the query result. Such conditions
are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby _item ::= single_valued_path_expression [identification _variable
having_clause ::= HAVING conditional _expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any
item that appears in the SELECT clause (other than as an argument to an aggregate function) must also
appear in the GROUP BY clause. In forming the groups, null values are treated as the same for grouping
purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or
lob-valued state fields.

The HAVING clause must specify search conditions over the grouping items or aggregate functions that
apply to grouping items.

5/2/06

98

Sun Microsystems, Inc.

SELECT Clause

4.8

Enterprise JavaBeans 3.0, Final Release Query Language

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group,
and the select list can only consist of aggregate functions. The use of HAVING in the absence of
GROUP BY is not required to be supported by an implementation of this specification. Portable appli-
cations should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, avg(c.filledOrderCount), count(c)
FROM Customer ¢

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT c.country, COUNT(c)
FROM Customer ¢

GROUP BY c.country

HAVING COUNT(c.country) > 3

SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause may contain one or more of the following elements: a single range variable or
identification variable that ranges over an entity abstract schema type, a single-valued path expression,
an aggregate select expression, a constructor expression.

The SELECT clause has the following syntax:

select _clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |

aggregate _expression |

identification_variable |

OBJECT (identification_variable) |

constructor_expression
constructor_expression ;=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate expression
aggregate_expression ;=

{AVG | MAX [MIN [SUM } ([DISTINCT] state_field _path_expression) |

COUNT (/DISTINCT] identification_variable | state_field_path expression |

single_valued_association_path _expression)

For example:

SELECT c.id, c.status
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

99 5/2/06

Sun Microsystems, Inc.

Query Language

4.8.1

Enterprise JavaBeans 3.0, Final Release SELECT Clause

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineltems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result. If DISTINCT is not specified, duplicate values are not eliminated.

Standalone identification variables in the SELECT clause may optionally be qualified by the OBJECT
operator. The SELECT clause must not use the OBJECT operator to qualify path expressions.

Result Type of the SELECT Clause

4.8.2

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state-field type, the result of an aggregate function, the result of a construction operation, or
some sequence of these.

The result type of the SELECT clause is defined by the the result types seéthet _expressions con-
tained in it. When multipleselect_expressions are used in the SELECT clause, the result of the query
is of typeObject[]] , and the elements in this result correspond in order to the order of their specifica-
tion in the SELECT clause and in type to the result types of each sédwt expressions.

The type of the result of select_expression is as follows:

* A single_valued_path_expression that is astate field_path _expression results in an
object of the same type as the corresponding state field of the entity. If the state field of the
entity is a primitive type, the corresponding object type is returned.

e A single_valued_path_expression that is a
single_valued_association_path_expression results in an entity object of the type of the
relationship field or the subtype of the relationship field of the entity object as determined by
the object/relational mapping.

* The result type of andentification_variable is the type of the entity to which that identifica-
tion variable corresponds or a subtype as determined by the object/relational mapping.

* The result type ohggregate expression is defined in section 4.8.4.

* The result type of @onstructor_expression is the type of the class for which the constructor
is defined. The types of the arguments to the constructor are defined by the above rules.

Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return one or more Java instances. The specified class
is not required to be an entity or to be mapped to the database. The constructor name must be fully qual-
ified.

5/2/06

100

Sun Microsystems, Inc.

SELECT Clause

4.8.3

Enterprise JavaBeans 3.0, Final Release Query Language

If an entity class name is specified in the SELECT NEW clause, the resulting entity instances are in the
new state.

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

Null Values in the Query Result

4.8.4

If the result of a query corresponds to a association-field or state-field whose value is null, that null
value is returned in the result of the query method. The IS NOT NULL construct can be used to elimi-
nate such null values from the result set of the query.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot produce

NULL values in the query result. A query that returns such a state-field type as a result type must not
return a null value.

Aggregate Functions in the SELECT Clause

The result of a query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX,
MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state-field. The path expression argument to COUNT may terminate in
either a state-field or a association-field, or the argument to COUNT may be an identification variable.
Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable state-field types (i.e., numeric types, string types, character types, or
date types).
The Java type that is contained in the result of a query using an aggregate function is as follows:

¢ COUNT returns Long.

* MAX, MIN return the type of the state-field to which they are applied.

* AVG returns Double.

* SUM returns Long when applied to state-fields of integral types (other than Biglinteger); Dou-

ble when applied to state-fields of floating point types; Biginteger when applied to state-fields

of type Biglinteger; and BigDecimal when applied to state-fields of type BigDecimal.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

101 5/2/06

Sun Microsystems, Inc.

Query Language

48.4.1

4.9

Enterprise JavaBeans 3.0, Final Release ORDER BY Clause

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is &plied.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

Examples
The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’

The following query returns the total number of orders.

SELECT COUNT(0)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.

SELECT COUNT(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer ¢
WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’

Note that this is equivalent to:

SELECT COUNT(l)

FROM Order o JOIN o.lineltems | JOIN o.customer c

WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’
AND l.price IS NOT NULL

ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.
The syntax of the ORDER BY clause is

orderby clause ::= ORDER BY orderby _item {, orderby_item}*
orderby _item ::= state_field_path_expression [ASC | DESC]

[32]

It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

5/2/06

102

Sun Microsystems, Inc.

ORDER BY Clause Enterprise JavaBeans 3.0, Final Release Query Language

When the ORDER BY clause is used in a query, each element of the SELECT clause of the query must
be one of the following:

1. an identification variable x, optionally denoted as OBJECT(x)
2. asingle_valued_association_path_expression
3. a state_field_path_expression

In the first two cases, eadlrderby_item must be an orderable state-field of the entity abstract schema
type value returned by the SELECT clause. In the third caseytlezby item must evaluate to the same
state-field of the same entity abstract schema type astéle field path expression in the SELECT
clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT o

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, a.zipcode

The following two queries are not legal becausedtderby itemis not reflected in the SELECT clause
of the query.

SELECT p.product_name

FROM Order o JOIN o.lineltems | JOIN l.product p JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

ORDER BY p.price

SELECT p.product_name

FROM Order o, IN(o.lineltems) | JOIN o.customer ¢
WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’
ORDER BY o.quantity

If more than oneorderby item is specified, the left-to-right sequence of thelerby item elements
determines the precedence, whereby the leftardstby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that descend-
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not
specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY clause
is used.

103 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release Bulk Update and Delete Operations

4.10 Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

The syntax of these operations is as follows:

update_statement ::= update _clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification _variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state field | single _valued association_field} =
new_value
new _value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
enum_primary
simple_entity _expression |
NULL

delete_statement ::= delete clause [where_clause]
delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to
related entities.

The new_value specified for an update operation must be compatible in type with the state-field to
which it is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks. Portable
applications must manually update the value of the version column, if desired, and/or manually validate
the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a separate transaction or at the begin-
ning of a transaction (before entities have been accessed whose state might be affected by such opera-
tions).

5/2/06

104

Sun Microsystems, Inc.

Query Language

Null Values Enterprise JavaBeans 3.0, Final Release
Examples:
DELETE
FROM Customer ¢
WHERE c.status = ‘inactive’
DELETE
FROM Customer c
WHERE c.status = ‘inactive’
AND c.orders IS EMPTY
UPDATE customer ¢
SET c.status = ‘outstanding’
WHERE c.balance < 10000
AND 1000 > (SELECT COUNT(0)
FROM customer cust JOIN cust.order 0)
4.11 Null Values
When the target of a reference does not exist in the database, its value is regakl¢idlaSQL 92
NULL semantics [4] defines the evaluation of conditional expressions contdidlrigvalues.
The following is a brief description of these semantics:
e Comparison or arithmetic operations with a NULL value always yield an unknown value.
* Two NULL values are not considered to be equal, the comparison yields an unknown value.
e Comparison or arithmetic operations with an unknown value always yield an unknown value.
* The IS NULL and IS NOT NULL operators converfNULL state-field or single-valued associ-
ation-field value into the respective TRUE or FALSE value.
* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.
Table 1 Definition of the AND Operator
AND [T |F |U
T T |F U
F |F |F
U U [(F U
105 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release Equality and Comparison Semantics

Table 2 Definition of the OR Operator
OR T |F U
T T |T T
T |F U
U T |U U
Table 3 Definition of the NOT Operator
NOT
T F
F T
U U
Note: The Java Persistence query language defines the empty string, ', as a string with 0 length, which
is not equal to a NULL value. However, NULL values and empty strings may not always be distin-
guished when queries are mapped to some databases. Application developers should therefore not rely
on the semantics of query comparisons involving the empty string and NULL value.
4.12 Equality and Comparison Semantics
Only the values ofike types are permitted to be compared. A typdike another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrappered Java class type equivalent (éng., andinteger are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.
Note that the arithmetic operators and comparison operators are permitted to be applied to
state-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.
Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.
Only equality/inequality comparisons over enums are required to be supported.
5/2/06 106

Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Final Release Query Language

4.13 Examples

The following examples illustrate the syntax and semantics of the Java Persistence query language.
These examples are based on the example presented in Section 4.3.2.

4.13.1 Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o

FROM Order o

WHERE o.shippingAddress.state = ‘CA’
Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

4.13.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) |

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
WHERE o.lineltems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineltems IS EMPTY

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems |
WHERE l.shipped = FALSE

107 5/2/06

Sun Microsystems, Inc.

Query Language

4.13.3

Enterprise JavaBeans 3.0, Final Release BNF

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing addresses,
as in Figure 1.

SELECT o

FROM Order o

WHERE

NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Section 4.12. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary key)
is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Development for
the J2EE Platform’:

SELECT DISTINCT o

FROM Order o JOIN o.lineltems |

WHERE l.product.type = ‘book’ AND
I.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

Queries Using Input Rarameters

4.14

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) |
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the state-field name, i.e., a string.

BNF

BNF notation summary:

e {...}grouping

e [...] optional constructs

5/2/06

108

Sun Microsystems, Inc.

BNF Enterprise JavaBeans 3.0, Final Release Query Language

* boldface keywords
e *zero or more
* [alternates

The following is the BNF for the Java Persistence query language.

QL_statement ::= select_statement | update statement | delete_statement
select_statement ;.= select _clause from_clause [where_clause] [groupby clause]
[having_clause] [orderby clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete clause [where_clause]
from_clause ::=
FROM identification_variable declaration
{, {identification_variable declaration | collection_member_declaration}}*
identification_variable declaration ::= range_variable declaration { join | fetch_join }*
range_variable _declaration :.:= abstract schema_name [AS] identification_variable
Join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path _expression
association_path_expression ::=
collection_valued_path _expression | single_valued_association_path expression
join_spec::= [LEFT [OUTER][INNER] JOIN
Join_association_path _expression ::= join_collection _valued path_expression |
Join_single valued association _path_expression
Join_collection_valued _path_expression::=
identification_variable.collection valued association _field
Join_single valued _association _path _expression::=
identification_variable.single valued _association_field
collection_member_declaration ::=
IN (collection_valued path_expression) [AS] identification_variable
single_valued _path_expression ::=
state_field _path_expression [single _valued _association_path expression
state_field _path_expression ::=
{identification variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}* single valued association_field
collection_valued _path_expression ::=
identification_variable.{single valued association _field.}*collection_valued_association_field
state_field ::= {embedded class state field.}*simple_state field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state field | single valued association _field} =
new_value
new_value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |

109 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release

boolean_primary |
enum_primary
simple_entity expression |
NULL
delete clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]
select clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ;=
single_valued_path _expression |
aggregate_expression |
identification_variable |
OBJECT (identification_variable) |
constructor_expression
constructor_expression ;=
NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate expression
aggregate_expression ;=
{AVG | MAX [MIN [SUM } ([DISTINCT] state_field path_expression) |
COUNT (/DISTINCT] identification_variable | state_field _path expression |
single_valued_association_path _expression)
where_clause ::= WHERE conditional _expression
groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby _item ::= single_valued path_expression | identification variable
having_clause ::= HAVING conditional_expression
orderby clause ::= ORDER BY orderby item {, orderby item}*
orderby item ::= state_field path expression [ASC | DESC]
subquery ::= simple_select_clause subquery from_clause [where_clause]
[groupby clause] [having clause]
subquery from_clause ::=
FROM subselect identification variable declaration
{, subselect _identification_variable declaration}*
subselect_identification_variable_declaration ::=
identification_variable _declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
simple_select_expression::=
single_valued_path_expression |
aggregate_expression |
identification_variable
conditional _expression :.= conditional _term | conditional _expression OR conditional _term
conditional _term ::= conditional factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression [(conditional _expression)
simple_cond_expression ;=
comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |

5/2/06

110

BNF

Sun Microsystems, Inc.

BNF Enterprise JavaBeans 3.0, Final Release Query Language

collection_member_expression |
exists_expression
between_expression ;=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND String_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
state_field _path_expression [NOT]IN (in_item {, in_item}* [subquery)
in_item ::= literal | input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued_path_expression [input_parameter}1S [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued _path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression
[NOT] MEMBER [OF] collection_valued _path expression
exists_expression.:= [NOT] EXISTS (subquery)
all_or_any expression ::={ ALL [ANY | SOME} (subquery)
comparison_expression ;=
string_expression comparison_operator {string_expression [all_or_any expression} |
boolean_expression { =|<>} {boolean _expression | all_or_any expression} |
enum_expression { =|<>} {enum_expression [all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression [all_or_any_expression} |
entity_expression { = [<> } {entity _expression [all_or_any expression} |
arithmetic _expression comparison_operator
{arithmetic_expression | all_or_any expression}
comparison_operator ::== [> [>= [< [<= [<>
arithmetic_expression ::= simple_arithmetic_expression [(subquery)
simple_arithmetic_expression ::=
arithmetic_term | simple_arithmetic _expression { + [- } arithmetic_term
arithmetic_term :.= arithmetic _factor [arithmetic_term {* |1 } arithmetic _factor
arithmetic_factor ::= [{ + [- }] arithmetic_primary
arithmetic_primary ::=
state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression
string_expression ::= string_primary | (subquery)
string_primary ::=
state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression

111 5/2/06

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Final Release

datetime_expression ;.= datetime_primary | (subquery)
datetime_primary :.:=
state_field_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=
state_field_path_expression |
boolean_literal |
input_parameter |
enum_expression ;= enum_primary | (subquery)
enum_primary ::=
state_field_path_expression |
enum_literal |
input_parameter |
entity_expression ;=
single_valued_association_path _expression | simple_entity expression
simple_entity _expression ::=
identification_variable |
input_parameter
functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(Sstring_primary, string_primary[, simple_arithmetic _expression)) |
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic _expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued _path _expression)
functions_returning_datetime ::=
CURRENT_DATE/
CURRENT_TIME |/
CURRENT_TIMESTAMP
functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,
simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

5/2/06

112

BNF

Sun Microsystems, Inc.

Persistence Contexts Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

Chapter 5

Entity Managers and Persistence Contexts

5.1 Persistence Contexts

A persistence context is a set of managed entity instances in which for any persistent entity identity
there is a unique entity instance. Within the persistence context, the entity instances and their lifecycle
are managed by the entity manager.

In Java EE environments, a JTA transaction typically involves calls across multiple components. Such
components may often need to access the same persistence context within a single transaction. To facil-
itate such use of entity managers in Java EE environments, when an entity manager is injected into a
component or looked up directly in JNDI its persistence context will automatically be propagated with
the current JTA transaction, and the EntityManager references that are mapped to the same persistence
unit will provide access to this same persistence context within the JTA transaction. This propagation of
persistence context by the Java EE container avoids the need for the application to pass references to
EntityManager instances from one component to another. An entity manager for which the container
manages the persistence context in this manner is termedtainer-managed entity managér con-
tainer-managed entity manager’s lifecycle is managed by the Java EE container.

113 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Obtaining an EntityManager

5.2

In less common use cases within Java EE environments, applications may need to access a persistence
context that is “stand-alone”—i.e. not propagated along with the JTA transaction across the EntityMan-
ager references for the given persistence unit. Instead, each instance of creating an entity manager
causes a new isolated persistence context to be created that is not accessible through other EntityMan-
ager references within the same transaction. These use cases are supported thicyegletbeti-

tyManager methods of th&ntityManagerFactory interface. An entity manager that is used by

the application to create and destroy a persistence context in this manner is terapgdieation-man-

aged entity manageAn application-managed entity manager’s lifecycle is managed by the application.

Both container-managed entity managers and application-managed entity managers and their persis-
tence contexts are required to be supported in Java EE web containers and EJB containers. Within an
EJB environment, container-managed entity managers are typically used.

In Java SE environments and in Java EE application client containers, only application-managed entity
managers are required to be suppé:f?éd

Obtaining an EntityManager

5.2.1

The entity manager for a persistence context is obtained from an entity manager factory.

When container-managed entity managers are used (in Java EE environments), the application does not
interact with the entity manager factory. The entity managers are obtained directly through dependency
injection or from JNDI, and the container manages interaction with the entity manager factory transpar-
ently to the application.

When application-managed entity managers are used, the application must use the entity manager fac-
tory to manage the entity manager and persistence context lifecycle.

An entity manager may not be shared among multiple concurrently executing threads. Entity managers
may only be accessed in a single-threaded manner.

Obtaining an Entity Manager in the Java EE Environment

A container-managed entity manager is obtained by the application through dependency injection, or
direct lookup of the entity manager in the JNDI namespace. The container manages the persistence
context lifecycle and the creation and the closing of the entity manager instance transparently to the
application.

The PersistenceContext annotation is used for entity manager injection. Tigpe element

specifies whether a transaction-scoped or extended persistence context is to be used, as described in sec-
tion 5.6. TheunitName element may optionally be specified to designate the persistence unit whose
factory is used by the container. (See section 8.4.2).

[33] Note that the use of JTA is not required to be supported in application client containers.

5/2/06

114

Sun Microsystems, Inc.

Obtaining an Entity Manager Factory Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

5.2.2

For example,

@PersistenceContext
EntityManager em;

@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager orderEM,;

The IJNDI lookup of an entity manager is illustrated below:

@Stateless

@PersistenceContext(name="OrderEM")

public class MySessionBean implements MylInterface {
@Resource SessionContext ctx;

public void doSomething() {
EntityManager em = (EntityManager)ctx.lookup("OrderEM");

Obtaining an Application-managed Entity Manager

5.3

An application-managed entity manager is obtained by the application from an entity manager factory.

The EntityManagerFactory API used to obtain an application-managed entity manager is the
same independent of whether this APl is used in Java EE or Java SE environments.

Obtaining an Entity Manager Factory

The EntityManac];erFactory interface is used by the application to create an application-managed
entity managé;?4 .

Each entity manager factory provides entity manager instances that are all configured in the same man-
ner (e.g., configured to connect to the same database, use the same initial settings as defined by the
implementation, etc.).

More than one entity manager factory instance may be available simultaneously in thglavm.

Methods of théentityManagerFactory interface are threadsafe.

(34]
(35]

It may also be used internally by the Java EE container. See section 5.9.

This may be the case when using multiple databases, since in a typical configuration a single entity manager only @smmunicat
with a single database. There is only one entity manager factory per persistence unit, however.

115 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release The EntityManagerFactory Interface

5.3.1

Obtaining an Entity Manager Factory in a Java EE Container

Within a Java EE environment, an entity manager factory may be injected usifgthistence-
Unit annotation or obtained through JNDI lookup. Tir@tName element may optionally be speci-
fied to designate the persistence unit whose factory is used. (See section 8.4.2).

For example

@PersistenceUnit
EntityManagerFactory emf;

5.3.2 Obtaining an Entity Manager Factory in a Java SE Ernvironment
Outside a Java EE container environment, jtheax.persistence.Persistence class is the
bootstrap class that provides access to an entity manager factory. The application creates an entity man-
ager factory by calling thereateEntityManagerFactory method of thejavax.persis-
tence.Persistence class, described in section 7.2.1.
For example,
EntityManagerFactory emf =
javax.persistence.Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();

5.4 The EntityManagerFactory Interface

The EntityManagerFactory interface is used by the application to obtain an application-managed
entity manager. When the application has finished using the entity manager factory, and/or at applica-
tion shutdown, the application should close the entity manager factory. Once an EntityManagerFactory
has been closed, all its entity managers are considered to be in the closed state.

5/2/06

116

Sun Microsystems, Inc.

Controlling Transactions Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

public interface javax.persistence.EntityManagerFactory {
/**
* Create a new EntityManager.
* This method returns a new EntityManager instance each time
* it is invoked.
* The isOpen method will return true on the returned instance.
*
public EntityManager createEntityManager();
/**
* Create a new EntityManager with the specified Map of
* properties.
* This method returns a new EntityManager instance each time
* it is invoked.
* The isOpen method will return true on the returned instance.
*
public EntityManager createEntityManager(Map map);
/**
* Close the factory, releasing any resources that it holds.
* After a factory instance is closed, all methods invoked on
* it will throw an lllegalStateException, except for isOpen,
* which will return false. Once an EntityManagerFactory has
* been closed, all its entity managers are considered to be
*in the closed state.
*/
public void close();

/**

* Indicates whether the factory is open. Returns true
* until the factory has been closed.

*/

public boolean isOpen();

Any number of vendor-specific properties may be included in the map passedateEntity-
Manager . Properties that are not recognized by a vendor must be ignored.

Vendors should use vendor namespaces for propertiesdeng.acme.persistence.logging).
Entries that make use of the namesppa@x.persistence and its subnamespaces must not be
used for vendor-specific information. The namesgagex.persistence is reserved for use by
this specification.

5.5 Controlling Transactions

Depending on the transactional type of the entity manager, transactions involving EntityManager opera-
tions may be controlled either through JTA or through use of the resourceHoti&y Transac-

tion API, which is mapped to a resource transaction over the resource that underlies the entities
managed by the entity manager.

117 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Controlling Transactions

5.5.1

An entity manager whose underlying transactions are controlled through JTA is terdie entity
manager

An entity manager whose underlying transactions are controlled by the application througftitithe
tyTransaction APl is termed aesource-local entity manager

A container-managed entity manager must be a JTA entity manager. JTA entity managers are only spec-
ified for use in Java EE containers.

An application-managed entity manager may be either a JTA entity manager or a resource-local entity
manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—at the
time its underlying entity manager factory is configured and created. See sections 6.2.1.2 and 7.1.1.

Both JTA entity managers and resource-local entity managers are required to be supported in Java EE

web containers and EJB containers. Within an EJB environment, a JTA entity manager is typically used.
In general, in Java SE environments only resource-local entity managers are supported.

JTA EntityManagers

5.5.2

An entity manager whose transactions are controlled through JTA is a JTA entity manager. A JTA
entity manager participates in the current JTA transaction, which is begun and committed external to the
entity manager and propagated to the underlying resource manager.

Resource-local EntityManagers

An entity manager whose transactions are controlled by the application througintibgel'rans-

action APl is aresource-local entity manager. A resource-local entity manager transaction is mapped
to a resource transaction over the resource by the persistence provider. Resource-local entity managers
may use server or local resources to connect to the database and are unaware of the presence of JTA
transactions that may or may not be active.

5.5.2.1 The EntityTransaction Interface

TheEntityTransaction interface is used to control resource transactions on resource-local entity
managers. Thé&ntityManager.getTransaction() method returns th&ntityTransac-
tion interface.

When a resource-local entity manager is used, and the persistence provider runtime throws an exception
defined to cause transaction rollback, it must mark the transaction for rollback.

5/2/06

118

Sun Microsystems, Inc.

Controlling Transactions Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts
If the EntityTransaction.commit operation fails, the persistence provider must roll back the
transaction.

public interface EntityTransaction {
/**
* Start a resource transaction.
* @throws lllegalStateException if isActive() is true.
*

public void begin();

/**

* Commit the current transaction, writing any unflushed
* changes to the database.

* @throws lllegalStateException if isActive() is false.

* @throws RollbackException if the commit fails.

*/

public void commit();

/**
* Roll back the current transaction.
* @throws lllegalStateException if isActive() is false.

* @throws PersistenceException if an unexpected error
* condition is encountered.
*/

public void rollback();

/**

* Mark the current transaction so that the only possible
* outcome of the transaction is for the transaction to be
* rolled back.

* @throws lllegalStateException if isActive() is false.

*

public void setRollbackOnly();

/**

* Determine whether the current transaction has been marked
* for rollback.

* @throws lllegalStateException if isActive() is false.

*/

public boolean getRollbackOnly();

/**

* Indicate whether a transaction is in progress.

* @throws PersistenceException if an unexpected error
* condition is encountered.

*/

public boolean isActive();

119 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Container-managed Persistence Contexts

5.5.3 Example

The following example illustrates the creation of an entity manager factory in a Java SE environment,
and its use in creating and using a resource-local entity manager.

import javax.persistence.*;

public class PasswordChanger {
public static void main (String[] args) {

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();
User user = (User)em.createQuery
("SELECT u FROM User u WHERE u.name=:name AND
u.pass=:pass")
.setParameter("name", args[0])
.setParameter("pass", args[1])
.getSingleResult();

if (user!=null)
user.setPassword(args[2]);

em.getTransaction().commit();

em.close();
emf.close ();

5.6 Container-managed Persistence Contexts

When a container-managed entity manager is used, the lifecycle of the persistence context is always
managed automatically, transparently to the application, and the persistence context is propagated with
the JTA transaction.

A container-managed persistence context may be defined to have either a lifetime that is scoped to a sin-
gle transaction or an extended lifetime that spans multiple transactions, dependingRerdise
tenceContextType thatis specified when its EntityManager is created. This specification refers to
such persistence contextstensaction-scoped persistence contextsextended persistence contexts
respectively.

The lifetime of the persistence context is declared usingPhsistenceContext annotation or
the persistence-context-ref deployment descriptor element. By default, a transaction-scoped
persistence context is used.

Sections 5.6.1 and 5.6.2 describe transaction-scoped and extended persistence contexts in the absence of
persistence context propagation. Persistence context propagation is described in section 5.6.3.

5/2/06 120

Sun Microsystems, Inc.

Container-managed Persistence Contexts Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

5.6.1

Persistence contexts are always associated with an entity manager factory. In the following, everywhere
that "the persistence context" appears, it should be understood to mean "the persistence context associ-
ated with a particular entity manager factory".

Container-managed Tansaction-scoped Brsistence Context

5.6.2

The application may obtain a container-managed entity manager with transaction-scoped persistence
context bound to the JTA transaction by injection or direct lookup in the JNDI namespace. The persis-
tence context type for the entity manager is defaulted or defineBeasistenceContext-

Type. TRANSACTION.

A new persistence context begins when the container-managed entity manager is W okeatie
scope of an active JTA transaction, and there is no current persistence context already associated with
the JTA transaction. The persistence context is created and then associated with the JTA transaction.

The persistence context ends when the associated JTA transaction commits or rolls back, and all entities
that were managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, any entities loaded from the database
will immediately become detached at the end of the method call.

Container-managed Extended Brsistence Context

5.6.2.1

5.6.3

A container-managed extended persistence context can only be initiated within the scope of a stateful
session bean. It exists from the point at which the stateful session bean that declares a dependency on an
entity manager of typPersistenceContextType.EXTENDED is created, and is said to beund

to the stateful session bean. The dependency on the extended persistence context is declared by means
of the PersistenceContext annotation opersistence-context-ref deployment descrip-

tor element.

The persistence context is closed by the container whe@Removemethod of the stateful session
bean completes (or the stateful session bean instance is otherwise destroyed).

Inheritance of Extended Persistence Context

If a stateful session bean instantiates a stateful session bean which also has such an extended persistence
context, the extended persistence context of the first stateful session bean is inherited by the second
stateful session bean and bound to it, and this rule recursively applies—independently of whether trans-
actions are active or not at the point of the creation of the stateful session beans.

If the persistence context has been inherited by any stateful session beans, the container does not close
the persistence context until all such stateful session beans have been removed or otherwise destroyed.

Persistence Context Popagation

As described in section 5.1, a single persistence context may correspond to one or more JTA entity man-
ager instances (all associated with the same entity manager EF?;?(l,)ory

[36] Specifically, when one of the methods of the EntityManager interface is invoked.

121 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Container-managed Persistence Contexts

The persistence context is propagated across the entity manager instances as the JTA transaction is
propagated.

Propagation of persistence contexts only applies within a local environment. Persistence contexts are
not propagated to remote tiers.

5.6.3.1 Requirements for Persistence Context Propagation
Persistence contexts are propagated by the container across component invocations as follows.

If a component is called and there is no JTA transaction or the JTA transaction is not propagated, the
persistence context is not propagated.

* If an entity manager is then invoked from within the component:

* Invocation of an entity manager defined witRPersistenceContext-
Type. TRANSACTION will result in use of a new persistence context (as described
in section 5.6.1).

* Invocation of an entity manager defined witRPersistenceContext-
Type.EXTENDED will result in the use of the existing extended persistence context
bound to that component.

* If the entity manager is invoked within a JTA transaction, the persistence context will
be bound to the JTA transaction.

If a component is called and the JTA transaction is propagated into that component:
* |If the component is a stateful session bean to which an extended persistence context has been
bound and there is a different persistence context bound to the JTA transactibdB&R-

ception is thrown by the container.

* Otherwise, if there is a persistence context bound to the JTA transaction, that persistence con-
text is propagated and used.

[37] Entity manager instances obtained from different entity manager factories never share the same persistence context.

5/2/06 122

Sun Microsystems, Inc.

Container-managed Persistence Contexts Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

5.6.4 Examples

5.6.4.1 Container-managed Transaction-scoped Persistence Context

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext EntityManager em;

public Order getOrder(Long id) {
return em.find(Order.class, id);

public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)

.getSingleResult();
}
public Lineltem createLineltem(Order order, Product product, int
quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
return li;
}

123 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Application-managed Persistence Contexts

5.6.4.2 Container-managed Extended Persistence Context

@Stateful
@Transaction(REQUIRES_NEW)
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)
EntityManager em;

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();
}

public Lineltem createLineltem(int quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return li;

5.7 Application-managed Persistence Contexts

When an application-managed entity manager is used, the application interacts directly with the persis-
tence provider's entity manager factory to manage the entity manager lifecycle and to obtain and destroy
persistence contexts.

All such application-managed persistence contexts are extended in scope, and may span multiple trans-
actions.

The EntityManager close andisOpen methods are used to manage the lifecycle of an applica-
tion-managed entity manager and its associated persistence context.

The EntityManager.close method closes an entity manager to release its persistence context and
other resources. After callinglose , the application must not invoke any further methods on the
EntityManager instance except fogetTransaction andisOpen , or thelllegalState-

Exception will be thrown. If theclose method is invoked when a transaction is active, the persis-
tence context remains managed until the transaction completes.

The EntityManager.isOpen method indicates whether the entity manager is open.iS®pen
method returns true until the entity manager has been closed.

5/2/06 124

Sun Microsystems, Inc.

Application-managed Persistence Contexts Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

The extended persistence context exists from the point at which the entity manager has been created
usingEntityManagerFactory.createEntityManager until the entity manager is closed by
means ofEntityManager.close . The extended persistence context obtained from the applica-
tion-managed entity manager is a stand-alone persistence context—it is not propagated with the transac-
tion.

When a JTA application-managed entity manager is used, if the entity manager is created outside the

scope of the current JTA transaction, it is the responsibility of the application to associate the entity
manager with the transaction (if desired) by callimgityManager.joinTransaction

5.7.1 Examples

5.7.1.1 Application-managed Persistence Context used in Stateless Session Bean

/*

* Container-managed transaction demarcation is used.
* Session bean creates and closes an entity manager in
* each business method.

*

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

public Order getOrder(Long id) {
EntityManager em = emf.createEntityManager();
Order order = (Order)em.find(Order.class, id);
em.close();
return order;

}

public Product getProduct() {
EntityManager em = emf.createEntityManager();
Product product = (Product) em.createQuery("select p from
Product p where p.name = :name")
.setParameter("name”, name)
.getSingleResult();
em.close();
return product;

public Lineltem createLineltem(Order order, Product product, int

quantity) {

EntityManager em = emf.createEntityManager();

Lineltem li = new Lineltem(order, product, quantity);

order.getLineltems().add(li);

em.persist(li);

em.close();

return li; // remains managed until JTA transaction ends

125 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Application-managed Persistence Contexts

5.7.1.2 Application-managed Persistence Context used in Stateless Session Bean

/-k
* Container-managed transaction demarcation is used.
* Session bean creates entity manager in PostConstruct
* method and clears persistence context at the end of each
* business method.
*
/
@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init()

em = emf.createEntityManager();
}

public Order getOrder(Long id) {
Order order = (Order)em.find(Order.class, id);
em.clear(); // entities are detached
return order;

}

public Product getProduct() {
Product product = (Product) em.createQuery("select p from
Product p where p.name = :name")
.setParameter("name”, name)
.getSingleResult();
em.clear();
return product;

public Lineltem createlLineltem(Order order, Product product, int

quantity) {
em.joinTransaction();
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
/I persistence context is flushed to database;
/I all updates will be committed to database on tx commit
em.flush();
/I entities in persistence context are detached
em.clear();
return Ii;
}
@PreDestroy
public void destroy()
em.close();
}

5/2/06 126

Sun Microsystems, Inc.

Application-managed Persistence Contexts Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

5.7.1.3 Application-managed Persistence Context used in Stateful Session Bean

/[Container-managed transaction demarcation is used

@ Stateful
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;
private Product product;

@PostConstruct
public void init() {

em = emf.createEntityManager();
}

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
em.joinTransaction();
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return li;

}

@Remove
public void destroy() {
em.close();

127 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Application-managed Persistence Contexts

5.7.1.4 Application-managed Persistence Context with Resource Transaction

/' Usage in an ordinary Java class
public class Shoppingimpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory("orderMgt");
em = emf.createEntityManager();

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
em.getTransaction().begin();

Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);

em.getTransaction().commit();
return li;
public void destroy() {

em.close();
emf.close();

5/2/06 128

Sun Microsystems, Inc.

Requirements on the Container Enterprise JavaBeans 3.0, Final Release Entity Managers and Persistence Contexts

5.8

Requirements on the Container

5.8.1

Application-managed Rersistence Contexts

5.8.2

When application-managed persistence contexts are used, the container must instantiate the entity man-
ager factory and expose it to the application via JNDI. The container might use internal APIs to create
the entity manager factory, or it might use tRersistenceProvider.createContainerEn-

tityManagerFactory method. However, the container is required to support third-party persis-
tence providers, and in this case the container must use the
PersistenceProvider.createContainerEntityManagerFactory method to create the
entity manager factory and thentityManagerFactory.close method to destroy the entity

manager factory prior to shutdown (if it has not been previously closed by the application).

Container Managed Rersistence Contexts

5.9

The container is responsible for managing the lifecycle of container-managed persistence contexts, for
injecting EntityManager references into web components and session bean and message-driven
bean components, and for making EntityManager references available to direct lookups in JNDI.

When operating with a third-party persistence provider, the container uses the contracts defined in sec-
tion 5.9 to create and destroy container-managed persistence contexts. It is undefined whether a new
entity manager instance is created for every persistence context, or whether entity manager instances are
sometimes reused. Exactly how the container maintains the association between persistence context and
JTA transaction is not defined.

If a persistence context is already associated with a JTA transaction, the container uses that persistence
context for subsequent invocations within the scope of that transaction, according to the semantics for
persistence context propagation defined in section 5.6.3.

Runtime Contracts between the Container and Persistence
Provider

5.9.1

This section describes contracts between the container and the persistence provider for the pluggability
of third-party persistence providers. Containers are required to support these pluggability dofitracts.

Container Responsibilities

For the management of a transaction-scoped persistence context, if there is no EntityManager already
associated with the JTA transaction:

(38]

It is not required that these contracts be used when a third-party persistence provider is not used: the contairethesght us
same APIs or its might use its own internal APIs.

129 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Runtime Contracts between the Container and

* The container creates a new entity manager by calintityManagerFactory.crea-
teEntityManager when the first invocation of an entity manager wiRbrsistence-
ContextType.TRANSACTION occurs within the scope of a business method executing in
the JTA transaction.

* After the JTA transaction has completed (either by transaction commit or rollback), The con-
tainer closes the entity manager by calligityManager.close

The container must throw thEransactionRequiredException if a transaction-scoped persis-
tence context is used, and the EntityManagersist , remove , merge, or refresh method is
invoked when no transaction is active.

For stateful session beans with extended persistence contexts:

* The container creates an entity manager by callimityManagerFactory.crea-
teEntityManager when a stateful session bean is created that declares a dependency on an
entity manager wittPersistenceContextType.EXTENDED . (See section 5.6.2).

* The container closes the entity manager by calkingityManager.close after the state-
ful session bean and all other stateful session beans that have inherited the same persistence
context as the EntityManager have been removed.

* When a business method of the stateful session bean is invoked, if the stateful session bean
uses container managed transaction demarcation, and the entity manager is not already associ-
ated with the current JTA transaction, the container associates the entity manager with the cur-

rent JTA transaction and callEntityManager.joinTransaction . If there is a
different persistence context already associated with the JTA transaction, the container throws
the EJBException

* When a business method of the stateful session bean is invoked, if the stateful session bean
uses bean managed transaction demarcation and a UserTransaction is begun within the
method, the container associates the persistence context with the JTA transaction and calls
EntityManager.joinTransaction

The container must throw thidlegalStateException if the application callsEntityMan-
ager.close on a container-managed entity manager.

When the container creates an entity manager, it may pass a map of properties to the persistence pro-
vider by using theentityManagerFactory.createEntityManager(Map map) method. If
properties have been specified in tiersistenceContext annotation or thepersis-
tence-context-ref deployment descriptor element, this method must be used and the map must
include the specified properties.

[39] The container may choose to pool EntityManagers and instead of creating and closing in each case acquire one feord its pool
callclear() onit.

5/2/06 130

Sun Microsystems, Inc.

Runtime Contracts between the Container and Persistence ProviderEnterprise JavaBeans 3.0, Final Release Entity Managers and Per

5.9.2 Provider Responsibilities

The Provider has no knowledge of the distinction between transaction-scoped and extended persistence
contexts. It provides entity managers to the container when requested and registers for synchronization
notifications for the transaction.

* When EntityManagerFactory.createEntityManager is invoked, the provider
must create and return a new entity manager. If a JTA transaction is active, the provider must
register for synchronization notifications against the JTA transaction.

* When EntityManager.joinTransaction is invoked, the provider must register for
synchronization naotifications against the current JTA transaction if a prejogugans-
action invocation for the transaction has not already been processed.

* When the JTA transaction commits, the provider must flush all modified entity state to the
database.

* When the JTA transaction rolls back, the provider must detach all managed entities.

* When the provider throws an exception defined to cause transaction rollback, the provider
must mark the transaction for rollback.

* WhenEntityManager.close is invoked, the provider should release all resources that it
may have allocated after any outstanding transactions involving the entity manager have com-
pleted. If the entity manager was already in a closed state, the provider must thritia-the
galStateException

* WhenEntityManager.clear is invoked, the provider must detach all managed entities.

131 5/2/06

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Final Release Runtime Contracts between the Container and

5/2/06 132

Sun Microsystems, Inc.

Persistence Unit Enterprise JavaBeans 3.0, Final Release Entity Packaging

aamers 2Ny Packaging

This chapter describes the packaging of persistence units.

6.1 Persistence Unit

A persistence unit is a logical grouping that includes:

* An entity manager factory and its entity managers, together with their configuration informa-
tion.

* The set of managed classes included in the persistence unit and managed by the entity manag-
ers of the entity manager factory.

* Mapping metadata (in the form of metadata annotations and/or XML metadata) that specifies
the mapping of the classes to the database.

133 5/2/06

Sun Microsystems, Inc.

Entity Packaging

6.2

Enterprise JavaBeans 3.0, Final Release Persistence Unit Packaging

Persistence Unit Packaging

Within Java EE environments, an EJB-JAR, WAR, EAR, or application client JAR can define a persis-
tence unit. Any number of persistence units may be defined within these scopes.

A persistence unit may be packaged within one or more jar files contained within a WAR or EAR, as a
set of classes within an EJB-JAR file or in the WBRsses directory, or as a combination of these as
defined below.

A persistence unit is defined byparsistence.xml file. The jar file or directory whoskRIETA-INF
directory contains theersistence.xml file is termed theoot of the persistence unit. In Java EE,
the root of a persistence unit may be one of the following:

* an EJB-JAR file

+ theWEB-INF/classes directory of a WAR fil&°]

* ajar file in theWEB-INF/lib directory of a WAR file

* ajar file in the root of the EAR

* ajar file in the EAR library directory

* an application client jar file
It is not required that an EJB-JAR or WAR containing a persistence unit be packaged in an EAR unless
the persistence unit contains persistence classes in addition to those contained in the EJB-JAR or WAR.
See Section 6.2.1.6.
A persistence unit must have a name. Only one persistence unit of any given name may be defined
within a single EJB-JAR file, within a single WAR file, within a single application client jar, or within

an EAR (in the EAR root dib directory). See Section 6.2.2, “Persistence Unit Scope”.

Thepersistence.xml file may be used to designate more than one persistence unit within the same
scope.

All persistence classes defined at the level of the Java EE EAR must be accessible to all other Java EE
components in the application—i.e. loaded by the application classloader—such that if the same entity

class is referenced by two different Java EE components (which may be using different persistence

units), the referenced class is the same identical class.

In Java SE environments, the metadata mapping files, jar files, and classes described in the following
sections can be used. To insure the portability of a Java SE application, it is necessary to explicitly list
the managed persistence classes that are included in the persistence unit. See Section 6.2.1.6.

[40]

The root of the persistence unit is théEB-INF/classes directory; thepersistence.xml file is therefore contained in the
WEB-INF/classes/META-INF directory.

5/2/06

134

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Final Release Entity Packaging

6.2.1 persistence.xml file

A persistence.xml file defines a persistence unit. It may be used to specify managed persistence
classes included in the persistence unit, object/relational mapping information for those classes, and
other configuration information for the persistence unit and for the entity manager(s) and entity man-
ager factory for the persistence unit. Tipersistence.xml file is located in theMETA-INF direc-

tory of the root of the persistence unit. This information may be defined by containment or by reference,
as described below.

The object/relational mapping information may take the form of annotations on the managed persis-
tence classes included in the persistence unit, one or more XML files contained in the root of the persis-
tence unit, one or more XML files outside the root of the persistence unit on the classpath and
referenced from thpersistence.xml , or a combination of these.

The managed persistence classes may either be contained within the root of the persistence unit; or they
may be specified by reference—i.e., by naming the classes, class archives, or mapping XML files
(which in turn reference classes) that are accessible on the application classpath; or they may be speci-
fied by some combination of these means. See Section 6.2.1.6.

Thepersistence element consists of one or mgrersistence-unit elements.

The persistence-unit element consists of theame andtransaction-type attributes and
the following sub-elements: description , provider jta-data-source ,
non-jta-data-source , mapping-file jar-file , class
exclude-unlisted-classes , andproperties

The name attribute is required; the other attributes and elements are optional. Their semantics are
described in the following subsections.

135 5/2/06

Sun Microsystems, Inc.

Entity Packaging

6.2.1.1

6.2.1.2

6.2.1.3

Enterprise JavaBeans 3.0, Final Release Persistence Unit Packaging

Examples:

<persistence>
<persistence-unit name="OrderManagement">
<description>
This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
</persistence-unit>
</persistence>

<persistence>
<persistence-unit name="OrderManagement2">
<description>
This unit manages inventory for auto parts.
It depends on features provided by the
com.acme.persistence implementation.
</description>
<provider>com.acme.AcmePersistence</provider>
<jta-data-source>jdbc/MyPartDB</jta-data-source>
<mapping-file>ormap2.xml</mapping-file>
<jar-file>MyPartsApp.jar</jar-file>
<properties>
<property name="com.acme.persistence.sql-logging"
value="on"/>
</properties>
</persistence-unit>
</persistence>

name
The name attribute defines the name for the persistence unit. This name may be used to identify a per-
sistence unit referred to by thRersistenceContext and PersistenceUnit annotations and

in the programmatic API for creating an entity manager factory.

transaction-type

The transaction-type attribute is used to specify whether the entity managers provided by the
entity manager factory for the persistence unit must be JTA entity managers or resource-local entity
managers. The value of this elemendisA or RESOURCE_LOCAA transaction-type of JTA
assumes that a JTA data source will be provided—either as specified jpg-theta-source ele-

ment or provided by the container. In general, in Java EE environmeti@nsaction-type of
RESOURCE_LOCAissumes that a non-JTA datasource will be provided. In a Java EE environment, if
this element is not specified, the defaulfiBA. In a Java SE environment, if this element is not speci-
fied, a default oBRESOURCE_LOCAhay be assumed.

description
Thedescription element provides optional descriptive information about the persistence unit.

5/2/06

136

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Final Release Entity Packaging
6.2.1.4 provider
The provider element specifies the name of the persistence provigavax.persis-
tence.spi.PersistenceProvider class. Theprovider element must be specified if the

6.2.1.5

6.2.1.6

application is dependent upon a particular persistence provider being used.

jta-data-source, non-jta-data-source

In Java EE environments, tfta-data-source andnon-jta-data-source elements are used

to specify the global JNDI name of the JTA and/or non-JTA data source to be used by the persistence
provider. If neither is specified, the deployer must specify a JTA data source at deployment or a JTA
data source must be provided by the container, and a JTA EntityManagerFactory will be created to cor-
respond to it.

These elements name the data source in the local environment; the format of these names and the ability
to specify the names are product specific.

In Java SE environments, these elements may be used or the data source information may be specified
by other means—depending upon the requirements of the provider.

mapping-file, jar-file, class, exclude-unlisted-classes
The following classes must be implicitly or explicitly denoted as managed persistence classes to be
included within a persistence unit: entity classes; embeddable classes; mapped superclasses.

The set of managed persistence classes that are managed by a persistence unit is defined by using one or
more of the followingﬁ‘ll

* One or more object/relational mapping XML files
* One or more jar files that will be searched for classes
* An explicit list of the classes

* The annotated managed persistence classes contained in the root of the persistence unit (unless
theexclude-unlisted-classes element is specified)

An object/relational mapping XML file contains mapping information for the classes listed in it. A
object/relational mapping XML file namegtm.xml may be specified in thMIETA-INF directory in

the root of the persistence unit or in tMETA-INF directory of any jar file referenced by tiper-
sistence.xml . Alternatively, or in addition, other mapping files may be referenced byrtap-
ping-file elements of theersistence-unit element, and may be present anywhere on the
class path. Amrm.xml file or other mapping file is loaded as a resource by the persistence provider. If
a mapping file is specified, the classes and mapping information specified in the mapping file will be
used. If multiple mapping files are specified (possibly including one or roarexml files), the

[41]

Note that an individual class may be used in more than one persistence unit.

137 5/2/06

Sun Microsystems, Inc.

Entity Packaging

6.2.1.7

Enterprise JavaBeans 3.0, Final Release Persistence Unit Packaging

resulting mappings are obtained by combining the mappings from all of the files. The result is unde-
fined if multiple mapping files (including anyrm.xml file) referenced within a single persistence unit
contain overlapping mapping information for any given class. The object/relational mapping informa-
tion contained in any mapping file referenced within the persistence unit must be disjoint at the
class-level from object/relational mapping information contained in any other such mapping file.

One or more JAR files may be specified usingjtefile elements instead of, or in addition to the
mapping files specified in thmapping-file elements. If specified, these JAR files will be searched

for managed persistence classes, and any mapping metadata annotations found on them will be pro-
cessed, or they will be mapped using the mapping annotation defaults defined by this specification.
Such JAR files are specified relative to the root of the persistence unitifésgnyUltils.jar).

A list of named managed persistence classes may also be specified instead of, or in addition to, the JAR
files and mapping files. Any mapping metadata annotations found on these classes will be processed, or
they will be mapped using the mapping annotation defaults.Cldms element is used to list a man-

aged persistence class. A list of all named managed persistence classes must be specified in Java SE
environments to insure portability. Portable Java SE applications should not rely on the other mecha-
nisms described here to specify the managed persistence classes of a persistence unit. Persistence pro-
viders may also require that the set of entity classes and classes that are to be managed must be fully
enumerated in each of thersistence.xml files in Java SE environments.

All classes contained in the root of the persistence unit are also searched for annotated managed persis-
tence classes and any mapping metadata annotations found on them will be processed, or they will be
mapped using the mapping annotation defaults. If it is not intended that the annotated persistence
classes contained in the root of the persistence unit be included in the persistence unit, the
exclude-unlisted-classes element should be used. Tleaclude-unlisted-classes

element is not intended for use in Java SE environments.

The resulting set of entities managed by the persistence unit is the union of these sources, with the map-
ping metadata annotations (or annotation defaults) for any given class being overridden by the XML
mapping information file if there are both annotations as well as XML mappings for that class. The min-
imum portable level of overriding is at the level of the persistent field or property.

The classes and/or jars that are named as part of a persistence unit must be on the classpath; referencing
them from thepersistence.xml file does not cause them to be placed on the classpath.

All classes must be on the classpath to ensure that entity managers from different persistence units that
map the same class will be accessing the same identical class.

properties
The properties element is used to specify vendor-specific properties that apply to the persistence
unit and its entity manager factory configuration.

If a persistence provider does not recognize properties (other than those defined by this specification),
the provider must ignore those properties.

5/2/06

138

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Final Release Entity Packaging

Vendors should use vendor namespaces for propertiesdem.acme.persistence.logging).
Entries that make use of the namesppa@x.persistence and its subnamespaces must not be
used for vendor-specific information. The namesgagex.persistence is reserved for use by
this specification.

6.2.1.8 Examples

The following are sample contents gbersistence.xml file.
Example 1:
<persistence-unit name= " OrderManagement " />

A persistence unit namédrderManagement is created.

Any annotated managed persistence classes found in the root of the persistence unit are added to the list
of managed persistence classes. MBTA-INF/orm.xml file exists, any classes referenced by it and
mapping information contained in it are used as specified above. Because no provider is specified, the
persistence unit is assumed to be portable across providers. Because the transaction type is not speci-
fied, JTA is assumed. The container must provide the data source (it may be specified at application
deployment, for example); in Java SE environments, the data source may be specified by others means.

Example 2:

<persistence-unit name= " OrderManagement2 ">
<mapping-file>mappings.xml</mapping-file>
</persistence-unit>

A persistence unit name@rderManagement?2 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed persistence classes. The
mappings.xml resource exists on the classpath and any classes and mapping information contained
in it are used as specified above. ETA-INF/orm.xml file exists, any classes and mapping infor-
mation contained in it are used as well. The transaction type, data source, and provider are as described
above.

Example 3:

<persistence-unit name= " OrderManagement3 ">
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit name@rderManagement3 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed persistence classes. If a
META-INF/orm.xml file exists, any classes and mapping information contained in it are used as
specified above. Therder.jar andorder-supplemental.jar files are searched for managed
persistence classes and any annotated managed persistence classes found in them and/or any classes
specified in theorm.xml files of these jar files are added. The transaction-type, data source and pro-
vider are as described above.

139 5/2/06

Sun Microsystems, Inc.

Entity Packaging

6.2.2

Enterprise JavaBeans 3.0, Final Release Persistence Unit Packaging

Example 4:

<persistence-unit
name="OrderManagement4 "
transaction-type=RESOURCE_LOCAL>
<non-jta-data-source>jdbc/MyDB</jta-data-source>
<mapping-file>order-mappings.xml</mapping-file>
<exclude-unlisted-classes/>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.ltem</class>
</persistence-unit>

A persistence unit namedrderManagement4 is created Theorder-mappings.xmi is read as
aresource and any classes referenced by it and mapping information contained in it are used. The anno-
tatedOrder , Customer andltem classes are loaded and are added. No (other) classes contained in
the root of the persistence unit are added to the list of managed persistence classes. The persistence unit
is portable across providers. A entity manager factory supplying resource-local entity managers will be
created. The data sourjckhc/MyDB must be used.

Example 5:

<persistence-unit name= " OrderManagement5 ">
<provider>com.acme.AcmePersistence</provider>
<mapping-file>orderl.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit name@rderManagement5 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed classes. The
orderl.xml andorder2.xml files are read as resources and any classes referenced by them and
mapping information contained in them are also used as specified aboverdergar is a jar file

on the classpath containing another persistence unit, winiler-supplemental.jar is just a

library of classes. Both of these jar files are searched for annotated managed persistence classes and any
annotated managed persistence classes found in them and/or any classes specifechinrtie files

(if any) of these jar files are added. The provimen.acme.AcmePersistence must be used.

Note that thepersistence.xml file contained inorder.jar is not used to augment the
persistence uniEM-5 with the classes of the persistence unit whose rawtir.jar

Persistence Unit Scope

An EJB-JAR, WAR, application client jar, or EAR can define a persistence unit.

When referencing a persistence unit using theitName annotation element opersis-
tence-unit-name deployment descriptor element, the visibility scope of the persistence unit is
determined by its point of definition. A persistence unit that is defined at the level of an EJB-JAR, WAR,
or application client jar is scoped to that EJB-JAR, WAR, or application jar respectively and is visible to
the components defined in that jar or war. A persistence unit that is defined at the level of the EAR is
generally visible to all components in the application.

5/2/06

140

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Final Release Entity Packaging

However, if a persistence unit of the same name is defined by an EJB-JAR, WAR, or application jar file
within the EAR, the persistence unit of that name defined at EAR level will not be visible to the compo-
nents defined by that EJB-JAR, WAR, or application jar file unless the persistence unit reference uses
the persistence unit name # syntax to specify a path name to disambiguate the reference. When the #
syntax is used, the path name is relative to the referencing application component jar file. For example,
the syntax../lib/persistenceUnitRoot.jar##myPersistenceUnit refers to a persis-

tence unit whose name, as specified in the name element pétkistence.xml file, is myPer-
sistenceUnit and for which the relative path name of the root of the persistence unit is
.Jlib/persistenceUnitRoot.jar . The # syntax may be used with both thaitName
annotation element gpersistence-unit-name deployment descriptor element to reference a
persistence unit defined at EAR level.

141 5/2/06

Sun Microsystems, Inc.

Entity Packaging

6.3

Enterprise JavaBeans 3.0, Final Release

persistence.xml Schema

persistence.xml Schema

This section provides the XML schema for gesistence.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<l-- persistence.xml schema -->

<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlins:persistence="http://java.sun.com/xml/ns/persistence”
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.0">

<xsd:annotation>
<xsd:documentation>
@ (#)persistence_1_0.xsd 1.0 Feb 9 2006
</xsd:documentation>
</xsd:annotation>
<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence configuration file.
The file must be named "META-INF/persistence.xml" in the
persistence archive.

Persistence configuration files must indicate

the persistence schema by using the persistence namespace:

http://java.sun.com/xml/ns/persistence

and indicate the version of the schema by
using the version element as shown below:

<persistence xmins="http://java.sun.com/xml/ns/persistence"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

</persistence>

]]></xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="versionType">
<xsd:restriction base="xsd:token">
<xsd:pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>

<l-- * * * * *kkk * * * S

<xsd:element name="persistence">
<xsd:complexType>
<xsd:sequence>

<lo % * * * * * * * >

<xsd:element name="persistence-unit"
minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:annotation>
<xsd:documentation>

5/2/06

142

Sun Microsystems, Inc.

persistence.xml Schema

Enterprise JavaBeans 3.0, Final Release

Configuration of a persistence unit.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<oe kk * * * >

<xsd:element name="description" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Textual description of this persistence unit.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<l-- >

<xsd:element name="provider" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Provider class that supplies EntityManagers for this
persistence unit.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- >

<xsd:element name="jta-data-source" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

The container-specific name of the JTA datasource to use.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<I-- * * * * >

<xsd:element name="non-jta-data-source" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

The container-specific nhame of a non-JTA datasource to use.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="mapping-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>

Entity Packaging

143

5/2/06

Sun Microsystems, Inc.

Entity Packaging Enterprise JavaBeans 3.0, Final Release persistence.xml Schema

File containing mapping information. Loaded as a resource
by the persistence provider.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="jar-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>

Jar file that should be scanned for entities.
Not applicable to Java SE persistence units.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- >

<xsd:element name="class" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>

Class to scan for annotations. It should be annotated
with either @Entity, @Embeddable or @MappedSuperclass.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="exclude-unlisted-classes" type="xsd:boolean"
default="false" minOccurs="0">
<xsd:annotation>
<xsd:documentation>

When set to true then only listed classes and jars will
be scanned for persistent classes, otherwise the enclosing
jar or directory will also be scanned. Not applicable to
Java SE persistence units.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="properties" minOccurs="0">
<xsd:annotation>
<xsd:documentation>

A list of vendor-specific properties.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="property"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>

5/2/06 144

Sun Microsystems, Inc.

persistence.xml Schema Enterprise JavaBeans 3.0, Final Release

<xsd:documentation>
A name-value pair.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="name" type="xsd:string"
use="required"/>
<xsd:attribute name="value" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:sequence>

<l-- >

<xsd:attribute name="name" type="xsd:string" use="required">

<xsd:annotation>
<xsd:documentation>

Name used in code to reference this persistence unit.
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<l-- -->

<xsd:attribute name="transaction-type"
type="persistence:persistence-unit-transac-
tion-type">
<xsd:annotation>
<xsd:documentation>

Type of transactions used by EntityManagers from this
persistence unit.

</xsd:documentation>
</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="version" type="persistence:versionType"
fixed="1.0" use="required"/>
</xsd:complexType>
</xsd:element>

<l-- * * * * >

<xsd:simpleType name="persistence-unit-transaction-type">
<xsd:annotation>
<xsd:documentation>

public enum TransactionType { JTA, RESOURCE_LOCAL };

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="JTA"/>
<xsd:enumeration value="RESOURCE_LOCAL"/>

</xsd:restriction>

Entity Packaging

145

5/2/06

Sun Microsystems, Inc.

Entity Packaging Enterprise JavaBeans 3.0, Final Release persistence.xml Schema

</xsd:simpleType>

</xsd:schema>

5/2/06 146

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Final Release Container and Provider Contracts for Deploy-

e CONtalner and Provider Contracts for
Deployment and Bootstrapping

This chapter defines requirements on the Java EE container and on the persistence provider for deploy-
ment and bootstrapping.

7.1 Java EE Deployment

Each persistence unit deployed into a Java EE container consists of apgngjitence.xml file,
any number of mapping files, and any number of class files.

7.1.1 Responsibilities of the Container

At deployment time the container is responsible for scanning the locations specified in Section 6.2 and
discovering thepersistence.xml files and processing them.

147 5/2/06

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Final Release Java EE Deployment

7.1.2

When the container findsgersistence.xml file, it processes the persistence unit definitions that it
contains. The container must validate theersistence.xml file against the
persistence_1 0.xsd schema and report any validation errors. Provider or data source informa-
tion not specified in theersistence.xml file must be provided at deployment time or defaulted by

the container. The container may optionally add any container-specific properties to be passed to the
provider when creating the entity manager factory for the persistence unit.

Once the container has read the persistence metadata, it determingavaéxepersis-
tence.spi.PersistenceProvider implementation class for each deployed named persistence
unit. It creates an instance of this implementation class and invokeg¢hgeContainerEnti-
tyManagerFactory method on that instance. The metadata—in the form Beesistence-

Unitinfo class—is passed to the persistence provider as part of this call. The factory obtained as a
result will be used by the container to create container-managed entity managers. Only one EntityMan-
agerFactory is permitted to be created for each deployed persistence unit configuration. Any number of
EntityManager instances may be created from a given factory.

When a persistence unit is redeployed, the container should catldke method on the previous

EntityManagerFactory instance and call thereateContainerEntityManagerFactory
method again, with the requir@ersistenceUnitInfo metadata, to achieve the redeployment.

Responsibilities of the Rrsistence Povider

7.1.3

The persistence provider must implement BersistenceProvider SPI and be able to process
the metadata that is passed to it at the tareateContainerEntityManagerFactory method

is called. An instance dEntityManagerFactory is created using thBersistenceUnitInfo
metadata for the factory. The factory is then returned to the container.

The persistence provider processes the metadata annotations on the managed classes of the persistence
unit.

When the persistence provider obtains an object/relational mapping file, it processes the definitions that
it contains. The persistence provider must validate any object/relational mapping files against the
orm_1 0.xsd schema and report any validation errors.

In Java SE environments, the persistence provider must validatetestence.xml file against
thepersistence_1_0.xsd schema and report any validation errors.

javax.persistence.spi.BrsistencePovider

The interfacgavax.persistence.spi.PersistenceProvider is implemented by the per-
sistence provider.

It is invoked by the container in Java EE environments. It is invoked byjakex.persis-

tence.Persistence class in Java SE environments. Tja@ax.persistence.spi.Per-
sistenceProvider implementation is not intended to be used by the application.
ThePersistenceProvider class must have a public no-arg constructor.

5/2/06

148

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Final Release Container and Provider Contracts for Deploy-

7.1.3.1

The properties used in treeateEntityManagerFactory method in Java SE environments are
described further in section 7.1.3.1 below.

package javax.persistence.spi;

/**

* Interface implemented by the persistence provider.

* This interface is used to create an EntityManagerFactory.

* |t is invoked by the container in Java EE environments and
* by the Persistence class in Java SE environments.
*/

public interface PersistenceProvider {

/**

* Called by Persistence class when an EntityManagerFactory
* is to be created.
*

* @param emName The name of the persistence unit
* @param map A Map of properties for use by the
* persistence provider. These properties may be used to
* override the values of the corresponding elements in
* the persistence.xml file or specify values for
* properties not specified in the persistence.xml
* (and may be null if no properties are specified).
* @return EntityManagerFactory for the persistence unit,
* or null if the provider is not the right provider
*
/
public EntityManagerFactory createEntityManagerFactory(String
emName, Map map);

/**

* Called by the container when an EntityManagerFactory
*is to be created.
*

* @param info Metadata for use by the persistence provider
* @return EntityManagerFactory for the persistence unit
* specified by the metadata
* @param map A Map of integration-level properties for use
* by the persistence provider (may be null if no properties

* are specified).

*

/

public EntityManagerFactory createContainerEntityManagerFac-

tory(PersistenceUnitinfo info, Map map);

Persistence Unit Properties

Persistence unit properties may be passed to persistence providers in the Map parametzeaf the
teEntityManagerFactory(String, Map) method. These properties correspond to the ele-
ments in thepersistence.xml file. When any of these properties are specified in the Map
parameter, their values override the values of the corresponding elementgpersistence.xml
file for the named persistence unit. They also override any defaults that the provider might have applied.

The properties listed below are defined by this specification.

149 5/2/06

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Final Release Java EE Deployment

* javax.persistence.provider — Corresponds to thegrovider element in the pe
sistence.xml . See section 6.2.1.4.

* javax.persistence.transactionType — Corresponds to thetransac-
tion-type attribute in thepersistence.xmi . See section 6.2.1.2.

* javax.persistence.jtaDataSource — Corresponds to thgta-data-source
element in the@ersistence.xml . See section 6.2.1.5.

* javax.persistence.nonJtaDataSource - Corresponds to the
non-jta-data-source element in th@ersistence.xml . See section 6.2.1.5.

Any number of vendor-specific properties may also be included in the map. Properties that are not rec-
ognized by a vendor must be ignored.

Vendors should use vendor namespaces for properties¢erg.acme.persistence.logging).
Entries that make use of the namesppa@x.persistence and its subnamespaces must not be
used for vendor-specific information. The namesgageax.persistence is reserved for use by
this specification.

5/2/06

150

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Final Release Container and Provider Contracts for Deploy-

7.1.4 javax.persistence.spi.BrsistenceUnitlnfo Interface

import javax.sgl.DataSource;

/**

* Interface implemented by the container and used by the
* persistence provider when creating an EntityManagerFactory.
*/

public interface PersistenceUnitinfo {

/**
* @return The name of the persistence unit.
* Corresponds to the name attribute in the persistence.xml file.
*/
public String getPersistenceUnitName();

/**

* @return The fully qualified name of the persistence provider

* implementation class.

* Corresponds to the <provider> element in the persistence.xml
* file.

*/ ile

public String getPersistenceProviderClassName();

/**

* @return The transaction type of the entity managers created
* by the EntityManagerFactory.

* The transaction type corresponds to the transaction-type

* attribute in the persistence.xml file.

*

public PersistenceUnitTransactionType getTransactionType();

/**
* @return The JTA-enabled data source to be used by the
* persistence provider.
* The data source corresponds to the <jta-data-source>
* element in the persistence.xml file or is provided at
* deployment or by the container.
*
/
public DataSource getJtaDataSource();

/**
* @return The non-JTA-enabled data source to be used by the
* persistence provider for accessing data outside a JTA
* transaction.
* The data source corresponds to the named <non-jta-data-source>
* element in the persistence.xml file or provided at
* deployment or by the container.
*
/
public DataSource getNonJtaDataSource();

/**

* @return The list of mapping file names that the persistence

* provider must load to determine the mappings for the entity

* classes. The mapping files must be in the standard XML

* mapping format, be uniquely named and be resource-loadable
* from the application classpath.

* Each mapping file name corresponds to a <mapping-file>

* element in the persistence.xml file.

151 5/2/06

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Final Release

*/
public List<String> getMappingFileNames();

/**

* Returns a list of URLs for the jar files or exploded jar

* file directories that the persistence provider must examine
* for managed classes of the persistence unit. Each URL

* corresponds to a named <jar-file> element in the

* persistence.xml file. A URL will either be a file:

* URL referring to a jar file or referring to a directory

* that contains an exploded jar file, or some other URL from
* which an InputStream in jar format can be obtained.

*

* @return a list of URL objects referring to jar files or
* directories.
*

public List<URL> getJarFileUrls();

/**
* Returns the URL for the jar file or directory that is the
* root of the persistence unit. (If the persistence unit is
* rooted in the WEB-INF/classes directory, this will be the
* URL of that directory.)
* The URL will either be a file: URL referring to a jar file
* or referring to a directory that contains an exploded jar
* file, or some other URL from which an InputStream in jar
* format can be obtained.
*
* @return a URL referring to a jar file or directory.
*
/
public URL getPersistenceUnitRootUrl();

/**

* @return The list of the names of the classes that the

* persistence provider must add it to its set of managed

* classes. Each name corresponds to a named <class> element
* in the persistence.xml file.

*

public List<String> getManagedClassNames();

/**
* @return Whether classes in the root of the persistence
* unit that have not been explicitly listed are to be
* included in the set of managed classes.
* This value corresponds to the <exclude-unlisted-classes>
* element in the persistence.xml file.
*
/
public boolean excludeUnlistedClasses();

/**

* @return Properties object. Each property corresponds
* to a <property> element in the persistence.xml file
*

public Properties getProperties();

/**
* @return ClassLoader that the provider may use to load any

* classes, resources, or open URLSs.
*

Java EE Deployment

5/2/06 152

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Final Release Container and Provider Contracts for Deploy-

public ClassLoader getClassLoader();
/**
* Add a transformer supplied by the provider that will be
* called for every new class definition or class redefinition
* that gets loaded by the loader returned by the
* PersistenceUnitinfo.getClassLoader method. The transformer
* has no effect on the result returned by the
* PersistenceUnitinfo.getNewTempClassLoader method.
* Classes are only transformed once within the same classloading
* scope, regardless of how many persistence units they may be
* a part of.
*

* @param transformer A provider-supplied transformer that the
* Container invokes at class-(re)definition time
*/

public void addTransformer(ClassTransformer transformer);

/**
* Return a new instance of a ClassLoader that the provider
* may use to temporarily load any classes, resources, or
* open URLs. The scope and classpath of this loader is
* exactly the same as that of the loader returned by
* PersistenceUnitinfo.getClassLoader. None of the classes loaded
* by this class loader will be visible to application
* components. The provider may only use this ClassLoader
* within the scope of the createContainerEntityManagerFactory
* call.
*

* @return Temporary ClassLoader with same visibility as current
* loader

*/

public ClassLoader getNewTempClassLoader();

The enum javax.persistence.spi.PersistenceUnitTransactionType defines
whether the entity managers created by the factory will be JTA or resource-local entity managers.

public enum PersistenceUnitTransactionType {
JTA,
RESOURCE_LOCAL

153 5/2/06

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Final Release Bootstrapping in Java SE

Thejavax.persistence.spi.ClassTransformer interface is implemented by a persistence
provider that wants to transform entities and managed classes at class load time or at class redefinition
time.

/**

* A persistence provider supplies an instance of this
* interface to the PersistenceUnitinfo.addTransformer
* method. The supplied transformer instance will get
* called to transform entity class files when they are
* loaded or redefined. The transformation occurs before
* the class is defined by the JVM.
*
/
public interface ClassTransformer {

/**

* Invoked when a class is being loaded or redefined.

* The implementation of this method may transform the
* supplied class file and return a new replacement class
.r

. file.

* @param loader The defining loader of the class to be
* transformed, may be null if the bootstrap loader

* @param className The name of the class in the internal form
* of fully qualified class and interface names

* @param classBeingRedefined If this is a redefine, the
* class being redefined, otherwise null

* @param protectionDomain The protection domain of the
* class being defined or redefined

* @param classfileBuffer The input byte buffer in class

* file format - must not be modified

* @return A well-formed class file buffer (the result of

* the transform), or null if no transform is performed

* @throws lllegalClassFormatException If the input does
* not represent a well-formed class file

*

/

byte[] transform(ClassLoader loader,
String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer)
throws lllegalClassFormatException;

7.2 Bootstrapping in Java SE Environments

In Java SE environments, ttﬁcersistence.createErg[i%'?/ManagerFactory method is used
by the application to create an entity manager fattory

A persistence provider implementation running in a Java SE environment should also act as a service
provider by supplying a service provider configuration file as described in the JAR File Specification

[8].

[42] Use of these Java SE bootstrapping APIs may be supported in Java EE containers; however, support for such useeis not requir

5/2/06 154

Sun Microsystems, Inc.

Bootstrapping in Java SE Environments Enterprise JavaBeans 3.0, Final Release Container and Provider Contracts for Deploy-

The provider configuration file serves to export the provider implementation class tetises-
tence bootstrap class, positioning the provider as a candidate for backing named persistence units.

The provider supplies the provider configuration file by creating a text file naaveat.persis-

tence.spi.PersistenceProvider and placing it in theMETA-INF/services directory of

one of its JAR files. The contents of the file should be the name of the provider implementation class of
thejavax.persistence.spi.PersistenceProvider interface.

Example:

A persistence vendor called ACME persistence products ships a JAR aaitezljar that contains its
persistence provider implementation. The JAR includes the provider configuration file.

acme.jar
META-INF/services/javax.persistence.spi.PersistenceProvider
com.acme.PersistenceProvider

The contents of th&ETA-INF/services/javax.persistence.spi.PersistencePro-
vider file is nothing more than the name of the implementation clessi.acme.Persisten-
ceProvider

Persistence provider jars may be installed or made available in the same ways as other service providers,
e.g. as extensions or added to the application classpath according to the guidelines in the JAR File Spec-
ification.

ThePersistence bootstrap class will locate all of the persistence providers by their provider config-
uration files and caltreateEntityManagerFactory() on them in turn until an appropriate
backing provider returns an EntityManagerFactory. A provider may deem itself as appropriate for the
persistence unit if any of the following are true:

* Its implementation class has been specified irpttovider element for that persistence unit

in thepersistence.xml file.

* Thejavax.persistence.provider property was included in the Map passedte-
ateEntityManagerFactory and the value of the property is the provider's implementa-
tion class.

* No provider was specified for the persistence unit in eitherpérsistence.xml or the

property map.

If a provider does not qualify as the provider for the named persistence unit, it mustmeturnwhen
createEntityManagerFactory is invoked on it.

155 5/2/06

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Final Release Bootstrapping in Java SE

7.2.1 javax.persistence.Brsistence Class
package javax.persistence;

import java.util.*;

/**

* Bootstrap class that is used to obtain an
* EntityManagerFactory.

*/

public class Persistence {

/**

* Create and return an EntityManagerFactory for the
* named persistence unit.
*

* @param persistenceUnitName The name of the persistence unit

* @return The factory that creates EntityManagers configured

* according to the specified persistence unit

*

public static EntityManagerFactory createEntityManagerFac-
tory(String persistenceUnitName) {...}

/**

* Create and return an EntityManagerFactory for the
* named persistence unit using the given properties.
*

* @param persistenceUnitName The name of the persistence unit
* @param props Additional properties to use when creating the

* factory. The values of these properties override any values

* that may have been configured elsewhere.

* @return The factory that creates EntityManagers configured

* according to the specified persistence unit.

*

/

public static EntityManagerFactory createEntityManagerFac-
tory(String persistenceUnitName, Map properties) {...}

5/2/06 156

Sun Microsystems, Inc.

Entity

Chapter 8

8.1

Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Metadata Annotations

This chapter and chapter 9 define the metadata annotations introduced by this specification.
The XML schema defined in chapter 10 provides an alternative to the use of metadata annotatations.

These annotations are in the packgyax.persistence

Entity

The Entity annotation specifies that the class is an entity. This annotation is applied to the entity
class.

The name annotation element defaults to the unqualified name of the entity class. This name is used to
refer to the entity in queries. The name must not be a reserved literal in the Java Persistence query lan-
guage.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
String name() default ",

157 5/2/06

Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Callback Annotations

8.2 Callback Annotations

The EntityListeners annotation specifies the callback listener classes to be used for an entity or
mapped superclass. TEmtityListeners annotation may be applied to an entity class or mapped
superclass.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
Class[] value();

The ExcludeSuperclassListeners annotation specifies that the invocation of superclass listen-
ers is to be excluded for the entity class (or mapped superclass) and its subclasses.

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeSuperclassListeners {

The ExcludeDefaultListeners annotation specifies that the invocation of default listeners is to
be excluded for the entity class (or mapped superclass) and its subclasses.

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeDefaultListeners {

}

The following annotations are used to specify callback methods for the corresponding lifecycle events.
These annotations may be applied to methods of an entity class, a mapped superclass, or an entity lis-
tener class.

@Target{METHODY}) @Retention(RUNTIME)
public @interface PrePersist {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostPersist {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PreRemove {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostRemove {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PreUpdate {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostUpdate {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostLoad {}

5/2/06

158

Sun Microsystems, Inc.

Annotations for Queries Enterprise JavaBeans 3.0, Final Release Metadata Annotations

8.3 Annotations for Queries

8.3.1 NamedQuery Annotation

TheNamedQuery annotation is used to specify a named query in the Java Persistence query language.
Thename element is used to refer to the query when usingghtyManager = methods that create
guery objects. Thé&NamedQuery and NamedQueries annotations can be applied to an entity or
mapped superclass.

@Target{TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {

String name();

String query();

QueryHint[] hints() default {};

@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
String name();
String value();

}@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedQueries {
NamedQuery[] value ();
}

8.3.2 NamedNativeQuery Annotation

The NamedNativeQuery annotation is used to specify a native SQL named query. The name ele-
ment is used to refer to the query when usingEméityManager methods that create query objects.
TheresultClass element refers to the class of the result; the value ofdéiseltSetMapping

element is the name of &glResultSetMapping , as defined in metadata. TiNamedNative-

Query andNamedNativeQueries annotations can be applied to an entity or mapped superclass.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
String name();
String query();
QueryHint[] hints() default {};
Class resultClass() default void.class;
String resultSetMapping() default "™'; // name of SglResultSetMap-

ping
}

@Target{TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQueries {
NamedNativeQuery][] value ();

}

159 5/2/06

Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Annotations for Queries

8.3.3 Annotations for SQL Query Result Set Mappings

The SglResultSetMapping annotation is used to specify the mapping of the result of a native SQL
query.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SglResultSetMapping {
String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

@Target({TYPE}) @Retention(RUNTIME)
public @interface SqglResultSetMappings {
SqlResultSetMapping]] value();

Thename element is the name given to the result set mapping, and used to refer to it in the methods of
the Query API. Theentities andcolumns elements are used to specify the mapping to entities
and to scalar values respectively.

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {
Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

TheentityClass element specifies the class of the result.

Thefields elementis used to map the columns specified in the SELECT list of the query to the prop-
erties or fields of the entity class.

ThediscriminatorColumn element is used to specify the column name (or alias) of the column in
the SELECT list that is used to determine the type of the entity instance.

@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();

Thename element is the name of the persistent field or property of the class.

The column names that are used in these annotations refer to the names of the columns in the SELECT
clause—i.e., column aliases, if applicable.

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {
String name();

5/2/06 160

Sun Microsystems, Inc.

References to EntityManager and EntityManagerFactoryEnterprise JavaBeans 3.0, Final Release Metadata Annotations

8.4 References to EntityManager and EntityManagerFactory

These annotations are used to express dependencies on entity managers and entity manager factories.

8.4.1 PersistenceContext Annotation

The PersistenceContext annotation is used to express a dependency on a container-managed
entity manager persistence context.

Thename element refers to the name by which the entity manager is to be accessed in the environment
referencing context, and is not needed when dependency injection is used.

The optionalunitName element refers to the name of the persistence unit. [ithtName element
is specified, the persistence unit for the entity manager that is accessible in JNDI must have the same
name.

Thetype element specifies whether a transaction-scoped or extended persistence context is to be used.
If thetype element is not specified, a transaction-scoped persistence context is used.

The optionalproperties element may be used to specify properties for the container or persistence
provider. Vendor specific properties may be included in the set of properties, and are passed to the per-
sistence provider by the container when the entity manager is created. Properties that are not recognized
by a vendor must be ignored.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext{
String name() default "";
String unitName() default ";
PersistenceContextType type default TRANSACTION;
PersistenceProperty[] properties() default {};

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

@Target({}) @Retention(RUNTIME)
public @interface PersistenceProperty {
String name();
String value();

}

@Target{TYPE}) @Retention(RUNTIME)
public @interface PersistenceContexts{
PersistenceContext[] value();

8.4.2 PersistenceUnit Annotation

ThePersistenceUnit annotation is used to express a dependency on an entity manager factory.

161 5/2/06

Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release References to EntityManager and EntityMan-

Thename element refers to the name by which the entity manager factory is to be accessed in the envi-
ronment referencing context, and is not needed when dependency injection is used.

The optionalunitName element refers to the name of the persistence unit as defined retbis-
tence.xml file. If the unitName element is specified, the persistence unit for the entity manager
factory that is accessible in INDI must have the same name.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit{

String name() default "";

String unitName() default "";

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits{
PersistenceUnit[] value();

}

5/2/06 162

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Chapter 9

9.1

Metadata for Object/Relational Mapping

The object/relational mapping metadata is part of the application domain model contract. It expresses
requirements and expectations on the part of the application as to the mapping of the entities and rela-
tionships of the application domain to a database. Queries (and, in particular, SQL queries) written
against the database schema that corresponds to the application domain model are dependent upon the
mappings expressed by means of the object/relational mapping metadata. The implementation of this
specification must assume this application dependency upon the object/relational mapping metadata and
insure that the semantics and requirements expressed by that mapping are observed.

Itis permitted, but not required, that DDL generation be supported by an implementation of this specifi-
cation. Portable applications should not rely upon the use of DDL generation.

Annotations for Object/Relational Mapping

These annotations and types are in the padkage.persistence

XML metadata may be used as an alternative to these annotations, or to override or augment annota-
tions, as described in Chapter 10.

163 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.1 Table Annotation

The Table annotation specifies the primary table for the annotated entity. Additional tables may be
specified usinggecondaryTable or SecondaryTables annotation.

Table 4 lists the annotation elements that may be specifiedfabke annotation and their default val-
ues.

If no Table annotation is specified for an entity class, the default values defined in Table 4 apply.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
String name() default "™;
String catalog() default ™;
String schema() default "";
UniqueConstraint[] uniqueConstraints() default {};

}
Table 4 Table Annotation Elements
Type Name Description Default
String name (Optional) The name of the table. Entity name
String catalog (Optional) The catalog of the table. Default catalog
String schema (Optional) The schema of the table. Default schema
for user
UniqueConstraint[]| uniqueConstraints (Optional) Unique constraints that are to heNo additional
placed on the table. These are only used if talpleonstraints
generation is in effect. These constraints apply
in addition to any constraints specified by thg
Column and JoinColumn annotations and con-
straints entailed by primary key mappings.
Example:
@Entity
@Table(hame="CUST", schema="RECORDS")
public class Customer { ... }
9.1.2 Secondary®able Annotation
The SecondaryTable annotation is used to specify a secondary table for the annotated entity class.
Specifying one or more secondary tables indicates that the data for the entity class is stored across mul-
tiple tables.
Table 5 lists the annotation elements that may be specified 8scandaryTable annotation and
their default values.
5/2/06 164

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

If no SecondaryTable annotation is specified, it is assumed that all persistent fields or properties of
the entity are mapped to the primary table. If no primary key join columns are specified, the join col-
umns are assumed to reference the primary key columns of the primary table, and have the same names
and types as the referenced primary key columns of the primary table.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
String name();
String catalog() default "™;
String schema() default ";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
UniqueConstraint[] uniqueConstraints() default {};

}
Table 5 SecondaryTable Annotation Elements

Type Name Description Default

String name (Required) The name of the table

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

PrimaryKeyJoin- pkJoinColumns (Optional) The columns that are | Column(s) of the same

Column|] used to join with the primary table.| name(s) as the primary key
column(s) in the primary
table

UniqueConstraint[]| uniqueConstraints (Optional) Unique constraints thatNo additional constraints
are to be placed on the table. Thege
are typically only used if table gen-
eration is in effect. These constraint
apply in addition to any constraints|
specified by the Column and Join-
Column annotations and constrain
entailed by primary key mappings.

7]

n

Example 1:Single secondary table with a single primary key column.

@Entity

@Table(name="CUSTOMER")

@SecondaryTable(hname="CUST_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumn(name="CUST_ID"))

public class Customer { ... }

Example 2: Single secondary table with multiple primary key columns.

@Entity
@Table(hname="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
pkJoinColumns={
@PrimaryKeyJoinColumn(name="CUST_ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE")})
public class Customer { ... }

165 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.3

Secondaryfables Annotation

9.14

TheSecondaryTables annotation is used to specify multiple secondary tables for an entity.

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTables {
SecondaryTable[] value();

}

Example 1: Multiple secondary tables assuming primary key columns are named the same in all tables.

@Entity

@Table(name="EMPLOYEE")

@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL"),
@SecondaryTable(name="EMP_HIST")

public class Employee { ... }

Example 2: Multiple secondary tables with differently named primary key columns.

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPL_ID")),
@SecondaryTable(name="EMP_HIST",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPLOYEE_ID"))

public class Employee { ... }

UniqueConstraint Annotation

The UnigueConstraint annotation is used to specify that a unique constraint is to be included in
the generated DDL for a primary or secondary table.

Table 6 lists the annotation elements that may be specifiedJoigaeConstraint annotation.

@Target({}) @Retention(RUNTIME)
public @interface UniqueConstraint {
String[] columnNames();

Table 6 UniqueConstraint Annotation Elements
Type Name Description Default
String[] | columnNames (Required) An array of the column names that make up the
constraint.
5/2/06 166

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example:

@Entity
@Table(
name="EMPLOYEE",
unigueConstraints=
@UniqueConstraint(columnNames={"EMP_ID", "EMP_NAME"})

public class Employee { ... }

9.1.5 Column Annotation

TheColumn annotation is used to specify a mapped column for a persistent property or field.

Table 7 lists the annotation elements that may be specified @olamn annotation and their default
values.

If no Column annotation is specified, the default values in Table 7 apply.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default ";

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ";

String table() default "";

int length() default 255;

int precision() default O; // decimal precision

int scale() default O; / decimal scale

}
Table 7 Column Annotation Elements

Type Name Description Default

String name (Optional) The name of the column. The property or field name

boolean| unique (Optional) Whether the property is a unique kefalse
This is a shortcut for the UniqueConstraint anro-
tation at the table level and is useful for when the
unique key constraint is only a single field. This
constraint applies in addition to any constraint
entailed by primary key mapping and to con-
straints specified at the table level.

boolean| nullable (Optional) Whether the database column is nuirue
lable.

boolean| insertable (Optional) Whether the column is included in true
SQL INSERT statements generated by the per-
sistence provider.

167 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

9.16

Enterprise JavaBeans 3.0, Final Release

Annotations for Object/Relational Mapping

Type Name Description Default

boolean| updatable (Optional) Whether the column is included in true
SQL UPDATE statements generated by the per-
sistence provider.

String columnDefinition| (Optional) The SQL fragment that is used wheGenerated SQL to create a
generating the DDL for the column. column of the inferred

type.

String table (Optional) The name of the table that contains Column is in primary table.
the column. If absent the column is assumed {o
be in the primary table.

int length (Optional) The column length. (Applies only if g 255
string-valued column is used.)

int precision (Optional) The precision for a decimal (exact| 0 (Value must be set by
numeric) column. (Applies only if a decimal co|- developer.)
umn is used.)

int scale (Optional) The scale for a decimal (exact 0
numeric) column. (Applies only if a decimal col-
umn is used.)

Example 1:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Example 2:

@Column(name="DESC",

columnDefinition="CLOB NOT NULL",
table="EMP_DETAIL")

@Lob

public String getDescription() { return description; }

Example 3:

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() { return cost; }

JoinColumn Annotation

The JoinColumn annotation is used to specify a mapped column for joining an entity association.

Table 8 lists the annotation elements that may be specified SaireColumn annotation and their
default values.

If no JoinColumn

described below apply.

annotation is specified, a single join column is assumed and the default values

5/2/06

168

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

The name annotation element defines the name of the foreign key column. The remaining annotation
elements (other thareferencedColumnName) refer to this column and have the same semantics as
for theColumn annotation.

If there is a single join column, and if theame annotation member is missing, the join column name is
formed as the concatenation of the following: the name of the referencing relationship property or field
of the referencing entity; "_"; the name of the referenced primary key column. If there is no such refer-
encing relationship property or field in the entity (i.e., a join table is used), the join column name is
formed as the concatenation of the following: the name of the entity; " "; the name of the referenced
primary key column.

If the referencedColumnName element is missing, the foreign key is assumed to refer to the pri-
mary key of the referenced table.

Support for referenced columns that are not primary key columns of the referenced table is optional.
Applications that use such mappings will not be portable.

If there is more than one join columnJainColumn annotation must be specified for each join col-
umn using theJoinColumns annotation. Both theame and thereferencedColumnName ele-
ments must be specified in each slisimColumn annotation.

@Target{METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default ";

String referencedColumnName() default ",

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ™;

String table() default "";

169 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Enterpri

se JavaBeans 3.0, Final Release

Annotations for Object/Relational Mapping

Table 8

JoinColumn Annotation Elements

Type

Name

Description

Default

String

name

(Optional) The name of the foreign key colun
The table in which it is found depends upon th
context. If the join is for a OneToOne or Many
ToOne mapping, the foreign key column is in th
table of the source entity. If the join is for a

ManyToMany, the foreign key is in a join tablel

hr(Default only

eapplies if a single

+ join column is

eused.) The concate-
nation of the fol-
lowing: the name of
the referencing rela-
tionship property or
field of the refer-
encing entity; "_";
the name of the ref-
erenced primary
key column. If there
is no such referenc-
ing relationship
property or field in
the entity, the join
column name is
formed as the con-
catenation of the
following: the name
of the entity; "_";
the name of the ref-
erenced primary
key column.

String

referencedColumnNam

(Optional) The name of the column referen
by this foreign key column. When used with
relationship mappings, the referenced column
in the table of the target entity. When used insi
a JoinTable annotation, the referenced key cqg
umn is in the entity table of the owning entity, o
inverse entity if the join is part of the inverse joi
definition.

e

céDefault only
appliesif single join
igolumn is being
Jeused.) The same
I-name as the primary
r key column of the

n referenced table.

boolean

unique

(Optional) Whether the property is a unique K
This is a shortcut for the UniqueConstraint anr

unique key constraint is only a single field. Iti
not necessary to explicitly specify this for a joi
column that corresponds to a primary key that
part of a foreign key.

efalse
0_

tation at the table level and is useful for when the

5
n
is

boolean

nullable

(Optional) Whether the foreign key column is
nullable.

true

boolean

insertable

(Optional) Whether the column is included i

sistence provider.

SQL INSERT statements generated by the per-

n true

boolean

updatable

(Optional) Whether the column is included i
SQL UPDATE statements generated by the p
sistence provider.

N true

er-

String

columnDefinition

generating the DDL for the column.

(Optional) The SQL fragment that is used wh

e@enerated SQL for
the column.

5/2/06

170

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping
Type Name Description Default
String table (Optional) The name of the table that contairjs Column is in pri-

9.1.7

the column. If a table is not specified, the col-| mary table.
umn is assumed to be in the primary table of the
applicable entity.

Example:

@ManyToOne
@JoinColumn(name="ADDR_ID")
public Address getAddress() { return address; }

JoinColumns Annotation

9.18

Composite foreign keys are supported by means ofitieColumns annotation. TheJoinCol-
umns annotation group3oinColumn annotations for the same relationship.

When theJoinColumns annotation is used, both theame and thereferencedColumnName
elements must be specified in each sl@hColumn annotation.

@Target{METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumns {
JoinColumn[] value();

}

Example:

@ManyToOne

@JoinColumns({
@JoinColumn(name="ADDR_ID", referencedColumnName="ID"),
@JoinColumn(name="ADDR_ZIP", referencedColumnName="ZIP")

)
public Address getAddress() { return address; }

Id Annotation

Theld annotation specifies the primary key property or field of an entity. [ih@nnotation may be
applied in an entity or mapped superclass.

By default, the mapped column for the primary key of the entity is assumed to be the primary key of the
primary table. If naColumn annotation is specified, the primary key column name is assumed to be the
name of the primary key property or field.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

Example:

@Id
public Long getld() { return id; }

171 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.9 Generated\alue Annotation

The GeneratedValue annotation provides for the specification of generation strategies for the val-
ues of primary keys. Th€eneratedValue annotation may be applied to a primary key property or
field of an entity or mapped superclass in conjunction withdthannotation[*3

Table 9 lists the annotation elements that may be specified @ereeratedValue annotation and
their default values.

The types of primary key generation are defined byGigerationType enum:

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };

The TABLE generator type value indicates that the persistence provider must assign primary keys for
the entity using an underlying database table to ensure uniqueness.

The SEQUENCENd IDENTITY values specify the use of a database sequence or identity column,
respectively.

The AUTOvalue indicates that the persistence provider should pick an appropriate strategy for the par-
ticular database. ThAUTOgeneration strategy may expect a database resource to exist, or it may
attempt to create one. A vendor may provide documentation on how to create such resources in the
event that it does not support schema generation or cannot create the schema resource at runtime.

This specification does not define the exact behavior of these strategies.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {
GenerationType strategy() default AUTO;

String generator() default ";

Table 9

GeneratedValue Annotation Elements

Type Name Description Default

Generation- strategy (Optional) The primary key generation straf-GenerationType. AUTO
Type egy that the persistence provider must use to
generate the annotated entity primary key.

String generator] (Optional) The name of the primary key gerPefault id generator supplied
erator to use as specified in the SequenceGdoy persistence provider.
erator or TableGenerator annotation.

[43] Portable applications should not use @eneratedValue annotation on other persistent fields or properties.

5/2/06

172

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example 1:

@Id

@GeneratedValue(strategy=SEQUENCE, generator="CUST_SEQ")
@Column(name="CUST_ID")

public Long getld() { return id; }

Example 2:

@Id

@GeneratedValue(strategy=TABLE, generator="CUST_GEN")
@Column(name="CUST _ID")

Long id;

9.1.10 Attrib uteOverride Annotation

TheAttributeOverride annotation is used to override the mapping of a Basic (whether explicit or
default) property or field or Id property or field.

The AttributeOverride annotation may be applied to an entity that extends a mapped superclass
or to an embedded field or property to override a basic mapping defined by the mapped superclass or
embeddable class. If thgtributeOverride annotation is not specified, the column is mapped the
same as in the original mapping.

Table 10 lists the annotation elements that may be specified fattabuteOverride annotation.
The column element refers to the table for the class that contains the annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {

String name();

Column column();

}
Table 10 AttributeOverride Annotation Elements
Type Name Description Default
String name (Required) The name of the property whose mapping ig

being overridden if property-based access is being used| or
the name of the field if field-based access is used.

Column column| (Required) The column that is being mapped to the persis-
tent attribute. The mapping type will remain the same as|is
defined in the embeddable class or mapped superclass.

173 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

Example:

@MappedSuperclass
public class Employee {

@Id protected Integer id;
@Version protected Integer version;
protected String address;

public Integer getld() { ... }

public void setld(Integerid) { ... }

public String getAddress() { ... }

public void setAddress(String address) { ... }

}

@Entity
@AttributeOverride(name="address", column=@Column(name="ADDR"))
public class PartTimeEmployee extends Employee {
// address field mapping overridden to ADDR
protected Float wage();
public Float getHourlyWage() { ... }
public void setHourlyWage(Float wage) { ... }

}

9.1.11 Attrib uteOverrides Annotation

The mappings of multiple properties or fields may be overridden AitrdbuteOverrides anno-
tation is used for this purpose.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
AttributeOverride[] value();

}

Example:

@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate",
column=@Column(name="EMP_START")),
@AttributeOverride(name="endDate",
column=@Column(name="EMP_END"))

1)
public EmploymentPeriod getEmploymentPeriod() { ... }

9.1.12 AssociationOwerride Annotation

The AssociationOverride annotation is used to override a many-to-one or one-to-one mapping
of property or field for an entity relationship.

The AssociationOverride annotation may be applied to an entity that extends a mapped super-
class to override a many-to-one or one-to-one mapping defined by the mapped superclagssbihe
ciationOverride annotation is not specified, the join column is mapped the same as in the original

mapping.

5/2/06 174

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping
Table 11 lists the annotation elements that may be specified fAssociationOverride annota-
tion.

ThejoinColumns element refers to the table for the class that contains the annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AssociationOverride {

String name();

JoinColumn([] joinColumns();

}
Table 11 AssociationOverride Annotation Elements
Type Name Description Default
String name (Required) The name of the relationship property whosg
mapping is being overridden if property-based access is
being used, or the name of the relationship field if
field-based access is used.
JoinCol- | join- (Required) The join column that is being mapped to the per-
umn(] Col- sistent attribute. The mapping type will remain the same|as
umns is defined in the mapped superclass.
Example:
@MappedSuperclass

public class Employee {

@Id protected Integer id;

@Version protected Integer version;
@ManyToOne

protected Address address;

public Integer getld() { ... }

public void setld(Integer id) { ... }

public Address getAddress() { ... }

public void setAddress(Address address) { ... }

}

@Entity
@AssociationOverride(name="address",
joinColumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// address field mapping overridden to ADDR_ID fk

@Column(name="WAGE")

protected Float hourlyWage;

public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

175 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

9.1.13 AssociationOwerrides Annotation

Enterprise JavaBeans 3.0, Final Release

Annotations for Object/Relational Mapping

The mappings of multiple many-to-one or one-to-one relationship properties or fields may be overrid-
den. TheAssociationOverrides annotation is used for this purpose.

@Target{TYPE, METHOD, FIELD}) @Retention(RUNTIME)

public @interface AssociationOverrides {
AssociationOverride[] value();

}

Example:

@MappedSuperclass
public class Employee {

@Id protected Integer id;

@Version protected Integer version;
@ManyToOne protected Address address;
@OneToOne protected Locker locker;

public Integer getld() { ... }

public void setld(Integerid) { ... }

public Address getAddress() { ... }

public void setAddress(Address address) { ... }
public Locker getLocker(){ ... }

public void setLocker(Locker locker) { ... }

}

@Entity
@AssociationOverrides({
@AssociationOverride(name="address",

joinColumns=@JoinColumn("ADDR_ID")),

@AttributeOverride(name="locker",

joinColumns=@JoinColumn("LCKR_ID"))})

public PartTimeEmployee { ... }

9.1.14 Embeddedld Annotation

The Embeddedld annotation is applied to a persistent field or property of an entity class or mapped
superclass to denote a composite primary key that is an embeddable class. The embeddable class must

be annotated &mbeddable .[44

There must be only onfembeddedld annotation and ntdl annotation when thEmbeddedid anno-

tation is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

[44] Note that theéd annotation is not used in the embeddable class.

5/2/06

176

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example:

@Embeddedld
protected EmployeePK empPK;

9.1.15 IdClass Annotation
TheldClass annotation is applied to an entity class or a mapped superclass to specify a composite
primary key class that is mapped to multiple fields or properties of the entity.
The names of the fields or properties in the primary key class and the primary key fields or properties of
the entity must correspond and their types must be the same. See Section 2.1.4, “Primary Keys and
Entity Identity”.
Theld annotation must also be applied to the corresponding fields or properties of the entity.
@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {
Class value();
}
Example:
@IdClass(com.acme.EmployeePK.class)
@Entity
public class Employee {
@Id String empName;
@Id Date birthDay;
}
9.1.16 Transient Annotation

The Transient annotation is used to annotate a property or field of an entity class, mapped super-
class, or embeddable class. It specifies that the property or field is not persistent.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

Example:

@Entity
public class Employee {
@Id intid;
@Transient User currentUser;

177 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.17

Version Annotation

9.1.18

TheVersion annotation specifies the version field or property of an entity class that serves as its opti-
mistic lock value. The version is used to ensure integrity when performing the merge operation and for
optimistic concurrency control.

Only a singleVersion property or field should be used per class; applications that use more than one
Version property or field will not be portable.

The Version property should be mapped to the primary table for the entity class; applications that
map theVersion property to a table other than the primary table will not be portable.

In general, fields or properties that are specified witifbesion annotation should not be updated by
the application*®]

The following types are supported for version propertias: , Integer , short , Short , long ,
Long, Timestamp .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

Example:

@Version
@Column(name="OPTLOCK")
protected int getVersionNum() { return versionNum; }

Basic Annotation

TheBasic annotation is the simplest type of mapping to a database columnBasie annotation

can be applied to a persistent property or instance variable of any of the following types: Java primitive
types, wrappers of the primitive typegava.lang.String , java.math.Biglnteger ,
java.math.BigDecimal , jJava.util.Date , java.util.Calendar , java.sgl.Date ,
java.sgl.Time , java.sgl.Timestamp , byte[] , Byte[]] , char[]] , Character]] |,
enums, and any other type that impleme®ésializable . As described in Section 2.1.6, the use of
theBasic annotation is optional for persistent fields and properties of these types.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER,;

boolean optional() default true;

}

Table 12 lists the annotation elements that may be specifiedBais&c annotation and their default
values.

[45] See, however, section 4.10.

5/2/06

178

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

TheFetchType enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER },

The EAGERSstrategy is a requirement on the persistence provider runtime that data must be eagerly
fetched. TheLAZY strategy is &hint to the persistence provider runtime that data should be fetched
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for which the
LAZY strategy hint has been specified. In particular, lazy fetching might only be availalia$or
mappings for which property-based access is used.

Theoptional element is a hint as to whether the value of the field or property may be null. It is disre-
garded for primitive types, which are considered non-optional.

Table 12

9.1.19

Basic Annotation Elements

Type Name Description Default

FetchType fetch (Optional) Whether the value of the field oy EAGER
property should be lazily loaded or must be
eagerly fetched. The EAGER strategy is a

requirement on the persistence provider runt-
ime that the value must be eagerly fetched.
The LAZY strategy is a hint to the persisteng
provider runtime.

[¢)

boolean optional (Optional) Whether the value of the field o true
property may be null. Thisis a hintand is d
regarded for primitive types; it may be used
schema generation.

5%

Example 1:

@Basic
protected String name;

Example 2:

@Basic(fetch=LAZY)
protected String getName() { return name; }

Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large object to a
database-supported large object type. Portable applications should usEbtla@notation when map-

ping to a database Lob type. Theb annotation may be used in conjunction with B&sic annota-

tion. A Lob may be either a binary or character type. The Lob type is inferred from the type of the
persistent field or property, and except for string and character-based types defaults to Blob.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {

}

179 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.20

Example 1:

@Lob @Basic(fetch=EAGER)
@Column(name="REPORT")
protected String report;

Example 2:

@Lob @Basic(fetch=LAZY)
@Column(name="EMP_PIC", columnDefinition="BLOB NOT NULL")
protected byte[] pic;

Temporal Annotation

The Temporal annotation must be specified for persistent fields or properties of type
java.util.Date andjava.util.Calendar . It may only be specified for fields or properties of
these types.

TheTemporal annotation may be used in conjunction withBaesic annotation.
TheTemporalType enum defines the mapping for these temporal types.

public enum TemporalType {
DATE, /ljava.sql.Date
TIME, //java.sql.Time
TIMESTAMP //java.sgl.Timestamp

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {
TemporalType value();

Table 13 lists the annotation elements that may be specified f@naporal annotation and their
default values.

Table 13

Temporal Annotation Elements

Type Name Description Default

TemporalType | value The type used in mapping java.util.Date o
java.util.Calendar.

Example:

@Temporal(DATE)
protected java.util.Date endDate;

5/2/06

180

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

9.1.21 Enumerated Annotation

An Enumerated annotation specifies that a persistent property or field should be persisted as a enu-
merated type. ThEnumerated annotation may be used in conjunction withBasic annotation.

An enum can be mapped as either a string or an integerEnbenType enum defines the mapping for
enumerated types.

public enum EnumType {
ORDINAL,
STRING

}

If the enumerated type is not specified or Ereumerated annotation is not used, the enumerated type
is assumed to bBRDINAL

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {

EnumType value() default ORDINAL;
}

Table 14 lists the annotation elements that may be specified Emuaerated annotation and their
default values.

Table 14

Enumerated Annotation Elements

Type Name Description Default
EnumType value (Optional) The type used in mapping an enu@RDINAL
type.
Example:

public enum EmployeeStatus {FULL_TIME, PART_TIME, CONTRACT}
public enum SalaryRate {JUNIOR, SENIOR, MANAGER, EXECUTIVE}
@Entity public class Employee {

b'inIic EmployeeStatus getStatus() {...}

@Enumerated(STRING)
public SalaryRate getPayScale() {...}

}

If the status property is mapped to a column of integer type, and the payscale property to a column of
varchar type, an instance that has a statdART_TIMEand a pay rate afUNIOR will be stored with
STATUSset to 1 andPAYSCALEset to"JUNIOR" .

181 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.22 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class that has
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it can
usually be inferred from the type of the object being referenced.

Table 15 lists the annotation elements that may be specified karsayToOne annotation and their
default values.

Thecascade element specifies the set of cascadable operations that are propagated to the associated
entity. The operations that are cascadable are defined BativadeType enum:

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH]};

The value cascade=ALL is equivalent tocascade={PERSIST, ¥MERGE, REMOVE,
REFRESH}

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

TheEAGERstrategy is a requirement on the persistence provider runtime that the associated entity must
be eagerly fetched. THeAZY strategy is aint to the persistence provider runtime that the associated
entity should be fetched lazily when it is first accessed. The implementation is permitted to eagerly fetch
associations for which tHeAZY strategy hint has been specified.

Table 15

ManyToOne Annotation Elements

Type Name Description Default

Class targetEntity] (Optional) The entity class that is the targetl of he type of the field or
the association. property that stores the
association.

CascadeType[]| cascade (Optional) The operations that must be casNo operations are cas-
caded to the target of the association. caded.

FetchType fetch (Optional) Whether the association should beEAGER
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy|is
a hint to the persistence provider runtime.

boolean optional (Optional) Whether the association is optionattue
If set to false then a non-null relationship must
always exist.

5/2/06

182

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example:

@ManyToOne(optional=false)
@JoinColumn(name="CUST_ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }

9.1.23 OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-to-one
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it can
usually be inferred from the type of the object being referenced.

Table 16 lists the annotation elements that may be specified @neloOne annotation and their
default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

String mappedBy() default "";

Table 16 OneToOne Annotation Elements

Name Description Default

Type

Class of he type of the field or
property that stores the

association.

targetEntity| (Optional) The entity class that is the target

the association.

cascade (Optional) The operations that must be casNo operations are cas-

CascadeType[]
caded to the target of the association. caded.

FetchType fetch (Optional) Whether the association should beEAGER

lazily loaded or must be eagerly fetched. The

EAGER strategy is a requirement on the per
tence provider runtime that the associated ent
must be eagerly fetched. The LAZY strategy
a hint to the persistence provider runtime.

5iS-
ity
is

boolean optional

(Optional) Whether the association is optionattue

If set to false then a non-null relationship mu
always exist.

5t

String mappedBy

(Optional) The field that owns the relationsh
The mappedBy element is only specified on t
inverse (non-owning) side of the association.

ip.
he

Example 1: One-to-one association that maps a foreign key column.

183

5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.24

On Customer class:

@OneToOne(optional=false)
@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

@O0OneToOne(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example 2: One-to-one association that assumes both the source and target share the same primary key
values.

On Employee class:

@Entity
public class Employee {
@Id Integer id;

@OneToOne @PrimaryKeyJoinColumn
Employeelnfo info;

}

On Employeelnfo class:

@Entity
public class Employeelnfo {
@Id Integer id;

OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

Table 17 lists the annotation elements that may be specified @mefl oMany annotation and their
default values.

If the collection is defined using generics to specify the element type, the associated target entity type
need not be specified; otherwise the target entity class must be specified.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

5/2/06

184

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release

Metadata for Object/Relational Mapping

Table 17 OneToMany Annotation Elements

Name

Type Description

Default

Class targetEntity

of the association. Optional only if the col-

ics. Must be specified otherwise.

(Optional) The entity class that is the targ

lection property is defined using Java gene

efThe parameterized type of
the collection when defined
rusing generics.

CascadeType[]| cascade (Optional) The operations that must be

caded to the target of the association.

cdde operations are cascaded.

FetchType fetch
lazily loaded or must be eagerly fetched. T

EAGER strategy is a requirement on the p

entities must be eagerly fetched. The LAZ

(Optional) Whether the association should

sistence provider runtime that the associat

HeAZY
e

Br-

ed

Y

=

strategy is a hint to the persistence provide
runtime.

String mappedBy | The field that owns the relationship.
Required unless the relationship is unidire

tional.

The default schema-level mapping for unidirectional one-to-many relationships uses a join

table, as described in Section 2.1.8.5. Unidirectional one-to-many relationships may be imple-

mented using one-to-many foreign key mappings, however, such support is not required in this
release. Applications that want to use a foreign key mapping strategy for one-to-many relation-

ships should make these relationships bidirectional to ensure portability.

Example 1: One-to-Many association using generics
In Customer class:

@OneToMany(cascade=ALL, mappedBy="customer”)
public Set<Order> getOrders() { return orders; }

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2: One-to-Many association without using generics

In Customer class:

@OneToMany(targetEntity=com.acme.Order.class, cascade=ALL,
mappedBy="customer”)
public Set getOrders() { return orders; }

185

5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.25

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

JoinTable Annotation

TheJoinTable annotation is used in the mapping of associationdoisTable annotation is spec-
ified on the owning side of a many-to-many association, or in a unidirectional one-to-many association.

Table 18 lists the annotation elements that may be specified Joirfable annotation and their
default values.

If the JoinTable annotation is missing, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables concate-
nated together (owning side first) using an underscore.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinTable {
String name() default ";
String catalog() default "™;
String schema() default "™;
JoinColumn[] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};

UniqueConstraint[] uniqgueConstraints() default {};

}

Table 18

JoinTable Annotation Elements

Type Name Description Default

String name (Optional) The name of the join table. =~ The concatenated names of
the two associated primary
entity tables, separated by an

underscore.

String catalog (Optional) The catalog of the table Default catalog.
String schema (Optional) The schema of the table. Default schema for user.
JoinCol- joinColumns (Optional) The foreign key columng The same defaults as for
umn(] of the join table which reference thg JoinColumn.

primary table of the entity owning the

association (i.e. the owning side of

the association).
JoinCol- inverseJoinColumng (Optional) The foreign key columrjsThe same defaults as for
umn(] of the join table which reference thg JoinColumn.

primary table of the entity that does
not own the association (i.e. the
inverse side of the association).

5/2/06

186

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping
Type Name Description Default
UniqueCon- | uniqueConstraints (Optional) Unique constraints that aro additional constraints
straint[] to be placed on the table. These are
only used if table generation is in
effect.
Example:
@JoinTable(
name="CUST_PHONE",
joinColumns=

9.1.26

@JoinColumn(name="CUST _ID", referencedColumnName="ID"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If the
Collection is defined using generics to specify the element type, the associated target entity class does
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning, or inverse, side.
The join table is specified on the owning side. If the association is bidirectional, either side may be des-
ignated as the owning side.

The same annotation elements for reToMany annotation apply to th&lanyToMany annotation.
Table 17 lists these annotation elements and their default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

Example 1:
In Customer class:

@ManyToMany
@JoinTable(name="CUST_PHONES")
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

187 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.27

Example 2:
In Customer class:

@ManyToMany(targetEntity=com.acme.PhoneNumber.class)
public Set getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(targetEntity=com.acme.Customer.class, mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:
In Customer class:

@ManyToMany
@JoinTable(
name="CUST_PHONE",
joinColumns=
@JoinColumn(name="CUST _ID", referencedColumnName="ID"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumberClass:

@ManyToMany(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

MapK ey Annotation

The MapKey annotation is used to specify the map key for associations ofatygetil.Map

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
String name() default ™,

Thename element designates the name of the persistent field or property of the associated entity that is
used as the map key. If theame element is not specified, the primary key of the associated entity is
used as the map key. If the primary key is a composite primary key and is mappe@lass , an
instance of the primary key class is used as the key.

If a persistent field or property other than the primary key is used as a map key then it is expected to
have a uniqueness constraint associated with it.

5/2/06

188

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example 1:

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empld")
public Map<Integer, Employee> getEmployees() {... }

}

@Entity
public class Employee {

@Id Integer getEmpid() { ... }

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}

Example 2:

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empPK")
public Map<EmployeePK, Employee> getEmployees() {... }

}
@Entity
public class Employee {
@Embeddedld public EmployeePK getEmpPK() { ... }

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}

@Embeddable

public class EmployeePK {
String name;
Date bday;

}

189 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.28

OrderBy Annotation

9.1.29

TheOrderBy annotation specifies the ordering of the elements of a collection valued association at the
point when the association is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
String value() default ";

The syntax of thealue ordering element is aorderby _list, as follows:

orderby list::= orderby item [,orderby_item]*
orderby _item::= property_or_field_name [ASC | DESC]

If ASCor DESCis not specifiedASC(ascending order) is assumed.
If the ordering element is not specified, ordering by the primary key of the associated entity is assumed.

The property or field name must correspond to that of a persistent property or field of the associated
class. The properties or fields used in the ordering must correspond to columns for which comparison
operators are supported.

Example:

@Entity public class Course {
@ManyToMany

@OrderBy("lastname ASC")
public List<Student> getStudents() {...};

}

@Entity public class Student {
@ManyToMany(mappedBy:"students")
@OrderBy // PK is assumed
public List<Course> getCourses() {...};

}

Inheritance Annotation

Thelnheritance annotation defines the inheritance strategy to be used for an entity class hierarchy.
It is specified on the entity class that is the root of the entity class hierarchy.

Support for the combination of inheritance strategies is not required by this specification. Portable
applications should only use a single inheritance strategy within an entity hierarchy.

5/2/06

190

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

The three inheritance mapping strategies are the single table per class hierarchy, joined subclass, and
table per concrete class strategies. See Section 2.1.10 for a more detailed discussion of inheritance strat-
egies. The inheritance strategy options are defined dyhleetanceType enum:

public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

Support for the TABLE_PER_CLASS mapping strategy is optional in this release.

If the Inheritance annotation is not specified or if no inheritance type is specified for an entity class
hierarchy, the SINGLE_TABLE mapping strategy is used.

Table 19 lists the annotation elements that may be specifiedIfdramitance annotation and their
default values.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {
InheritanceType strategy() default SINGLE_TABLE;

}
Table 19 Inheritance Annotation Elements
Type Name Description Default
InheritanceType strategy (Optional) The inheritancénheritanceType.SINGLE_TABLE
strategy to use for the
entity inheritance hierar-
chy.
Example:
@Entity

@Inheritance(strategy=JOINED)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

9.1.30 DiscriminatorColumn Annotation

For the SINGLE_TABLE mapping strategy, and typically also for the JOINED strategy, the persistence
provider will use a type discriminator column. TBescriminatorColumn annotation is used to
define the discriminator column for the SINGLE_TABLE and JOINED inheritance mapping strategies.

The strategy and the discriminator column are only specified in the root of an entity class hierarchy or
subhierarchy in which a different inheritance strategy is applied.

TheDiscriminatorColumn annotation can be specified on an entity class (including on an abstract
entity class).

191 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

If the DiscriminatorColumn annotation is missing, and a discriminator column is required, the
name of the discriminator column defaults to "DTYPE" and the discriminator type to STRING.

Table 20 lists the annotation elements that may be specified Bis@iminatorColumn annota-
tion and their default values.

The supported discriminator types are defined byikeriminatorType enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The type of the discriminator column, if specified in the optics@lmnDefinition element, must
be consistent with the discriminator type.

@Target{TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default "DTYPE";
DiscriminatorType discriminatorType() default STRING;
String columnDefinition() default ™;
int length() default 31;

Table 20 DiscriminatorColumn Annotation Elements
Type Name Description Default
String name (Optional) The name of column to be used fotDTYPE”
the discriminator.
Dis- discriminator- (Optional) The type of object/column to use| DiscriminatorType.STRING
crimi- Type as a class discriminator.
natorTy
pe

String columnDefinition| (Optional) The SQL fragment that is used | Provider-generated SQL to
when generating the DDL for the discrimina- create a column of the speci-
tor column. fied discriminator type.

String length (Optional) The column length for 31
String-based discriminator types. Ignored fqg
other discriminator types.

=

Example:

@Entity

@Table(name="CUST")

@Inheritance

@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

5/2/06 192

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

9.1.31 DiscriminatorV alue Annotation

TheDiscriminatorValue annotation is used to specify the value of the discriminator column for
entities of the given type. ThBiscriminatorValue annotation can only be specified on a con-
crete entity class. If th®iscriminatorValue annotation is not specified and a discriminator col-
umn is used, a provider-specific function will be used to generate a value representing the entity type.

The inheritance strategy and the discriminator column are only specified in the root of an entity class
hierarchy or subhierarchy in which a different inheritance strategy is applied. The discriminator value, if
not defaulted, should be specified for each entity class in the hierarchy.

Table 21 lists the annotation elements that may be specifiedD@aiminatorValue annotation
and their default values.

The discriminator value must be consistent in type with the discriminator type of the specified or
defaulted discriminator column. If the discriminator type is an integer, the value specified must be able
to be converted to an integer value (€'%,).

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {
String value();

Table 21

DiscriminatorValueAnnotation Elements

Type Name Description Default

String value (Optional) The value that indicates that the If the DiscriminatorValue
row is an entity of the annotated entity type| annotation is not specified, a
provider-specific function to
generate a value represent-
ing the entity type is used for
the value of the discriminator
column. If the Discriminator-
Type is STRING, the dis-
criminator value default is
the entity name.

Example:

@Entity

@Table(name="CUST")

@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
@DiscriminatorValue("CUSTOMER")

public class Customer { ... }

@Entity
@DiscriminatorValue("VCUSTOMER")
public class ValuedCustomer extends Customer { ... }

193 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Enterprise JavaBeans 3.0, Final Release

9.1.32 PrimaryK eyJoinColumn Annotation

The PrimaryKeyJoinColumn
key to join to another table.

The PrimaryKeyJoinColumn

Annotations for Object/Relational Mapping

annotation specifies a primary key column that is used as a foreign

annotation is used to join the

primary table of an entity subclass in

the JOINED mapping strategy to the primary table of its superclass; it is used withatand-
aryTable annotation to join a secondary table to a primary table; and it may be use€dneBoOne
mapping in which the primary key of the referencing entity is used as a foreign key to the referenced

entity.

Table 22 lists the annotation elements that may be specifiedRaneryKeyJoinColumn

tion and their default values.

If no PrimaryKeyJoinColumn

annota-

annotation is specified for a subclass in the JOINED mapping strat-
egy, the foreign key columns are assumed to have the same names as the primary key columns of the
primary table of the superclass.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {

String name() default ";

String referencedColumnName() default ";
String columnDefinition() default ";

Table 22 PrimaryKeyJoinColumn Annotation Elements

Type | Name Description Default

String | name The name of the primary key co|- The same name as the primary key
umn of the current table. column of the primary table of the

superclass (JOINED mapping strat-
egy); the same name as the primary
key column of the primary table
(SecondaryTable mapping); or the
same name as the primary key col-
umn for the table for the referencing
entity (OneToOne mapping).

String | referencedColumnName (Optional) The name of the pri- The same name as the primary key
mary key column of the table column of the primary table of the
being joined to. superclass (JOINED mapping strat-

egy); the same name as the primary
key column of the primary table
(SecondaryTable mapping); or the
same name as the primary key col-
umn of the table for the referenced
entity (OneToOne mapping).

String | columnDefinition (Optional) The SQL fragment thatGenerated SQL to create a column
is used when generating the DDL of the inferred type.
for the column. This should not be
specified for a OneToOne primary
key association.

5/2/06 194

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release

9.1.33

Example: Customer and ValuedCustomer subclass

@Entity
@Table(name="CUST")
@Inheritance(strategy=JOINED)
@DiscriminatorValue("CUST")
public class Customer { ... }

@Entity

@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumn(name="CUST_ID")

public class ValuedCustomer extends Customer { ... }

PrimaryK eyJoinColumns Annotation

Metadata for Object/Relational Mapping

Composite foreign keys are supported by means oPttiaryKeyJoinColumns annotation. The
PrimaryKeyJoinColumns annotation groupBrimaryKeyJoinColumn annotations.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn(] value();

Example 1:ValuedCustomer subclass

@Entity
@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="CUST_ID",
referencedColumnName="ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE",
referencedColumnName="TYPE")

1)
public class ValuedCustomer extends Customer { ... }

195

5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

9.1.34

Example 2: OneToOne relationship between Employee and Employeelnfo classes

public class EmpPK {
public Integer id;
public String name;

}

@Entity
@IdClass(com.acme.EmpPK.class)
public class Employee {

@Id Integer id;
@Ild String name;

@OneToOne
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="ID", referencedColumn-
Name="EMP_ID"),
@PrimaryKeyJoinColumn(name="NAME", referencedColumn-
Name="EMP_NAME")})
Employeelnfo info;

}

@Entity
@IdClass(com.acme.EmpPK.class)
public class Employeelnfo {

@Ild @Column(name="EMP_ID")
Integer id;

@Ild @Column(name="EMP_NAME")
String name;

Embeddable Annotation

The Embeddable annotation is used to specify a class whose instances are stored as an intrinsic part
of an owning entity and share the identity of the entity. Each of the persistent properties or fields of the
embedded object is mapped to the database table for the entityBasiy , Column, Lob, Tempo-

ral , andEnumerated mapping annotations may portably be used to map the persistent fields or
properties of classes annotatedEasbeddable .[46]

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {

}

[46] Note that theransient annotation may be used to designate the non-persistent state of an embeddable class.

5/2/06

196

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Metadata for Object/Relational Mapping

Example:

@Embeddable

public class EmploymentPeriod {
java.util.Date startDate;
java.util.Date endDate;

}
9.1.35 Embedded Annotation
The Embedded annotation is used to specify a persistent field or property of an entity whose value is
an instance of an embeddable class.
The AttributeOverride and/ orAttributeOverrides annotations may be used to override
the column mappings declared within the embeddable class, which are mapped to the entity table.
Implementations are not required to support embedded objects that are mapped across more than one
table (e.g., split across primary and secondary tables or multiple secondary tables).
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}
Example:
@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate",
column=@Column(nhame="EMP_START")),
@AttributeOverride(name="endDate",
column=@Column(hame="EMP_END"))
)
public EmploymentPeriod getEmploymentPeriod() { ... }
9.1.36 MappedSuperclass Annotation
The MappedSuperclass annotation designates a class whose mapping information is applied to the
entities that inherit from it. A mapped superclass has no separate table defined for it.
A class designated with thdappedSuperclass annotation can be mapped in the same way as an
entity except that the mappings will apply only to its subclasses since no table exists for the mapped
superclass itself. When applied to the subclasses the inherited mappings will apply in the context of the
subclass tables. Mapping information may be overridden in such subclasses by ughtigilie
teOverride annotation.
@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass {}
9.1.37 SequenceGenerator Annotation

197 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

The SequenceGenerator annotation defines a primary key generator that may be referenced by
name when a generator element is specified fo@areratedValue annotation. A sequence gener-

ator may be specified on the entity class or on the primary key field or property. The scope of the gener-
ator name is global to the persistence unit (across all generator types).

Table 23 lists the annotation elements that may be specified $@gaenceGenerator annotation
and their default values.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {
String name();
String sequenceName() default ";
int initialValue() default 1;
int allocationSize() default 50;

}

Table 23

9.1.38

SequenceGenerator Annotation Elements

Type Name Description Default

String | name (Required) A unique generator name that can be referenced by
one or more classes to be the generator for primary key valugs.

String | sequenceName (Optional) The name of the database sequence object from whimtovider-

to obtain primary key values. chosen
value
int initialValue (Optional) The value from which the sequence object is to staril
generating.
int allocationSize (Optional) The amount to increment by when allocating sequerkte

numbers from the sequence.

Example:

@SequenceGenerator(name="EMP_SEQ", allocationSize=25)

TableGenerator Annotation

The TableGenerator annotation defines a primary key generator that may be referenced by name
when a generator element is specified for@eneratedValue annotation. A table generator may be
specified on the entity class or on the primary key field or property. The scope of the generator name is
global to the persistence unit (across all generator types).

Table 24 lists the annotation elements that may be specified TabkeGenerator annotation and
their default values.

5/2/06

198

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Enterprise JavaBeans 3.0, Final Release

Metadata for Object/Relational Mapping

The table element specifies the name of the table that is used by the persistence provider to store gener-
ated id values for entities. An entity type will typically use its own row in the table for the generation of

its id values. The id values are normally positive integers.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {
String name();
String table() default "";
String catalog() default "";
String schemay() default "";
String pkColumnName() default "™;
String valueColumnName() default ";
String pkColumnValue() default "™;
int initialValue() default O;
int allocationSize() default 50;

UniqueConstraint[] uniqgueConstraints() default {};

Table 24

}
TableGenerator Annotation Elements

Type Name Description Default

String | name (Required) A unique generator name that
can be referenced by one or more classges
to be the generator for id values.

String | table (Optional) Name of table that stores the Name is chosen by persistence
generated id values. provider

String | catalog (Optional) The catalog of the table. Default catalog

String | schema (Optional) The schema of the table. Default schema for user

String | pkColumnName (Optional) Name of the primary key col- A provider-chosen hame
umn in the table.

String | valueColumn- (Optional) Name of the column that storgs A provider-chosen name

Name the last value generated.

String | pkColumnValue (Optional) The primary key value in thg A provider-chosen value to store
generator table that distinguishes this set in the primary key column of the
of generated values from others that maly generator table
be stored in the table.

int initialValue (Optional) The value used to initialize the 0
column that stores the last value generatgd.

int allocationSize (Optional) The amount to increment by| 50
when allocating id numbers from the gen-
erator.

Uniqu | uniqueConstraints| (Optional) Unique constraints that are foNo additional constraints

eCon- be placed on the table. These are only uged

straint if table generation is in effect. These con-

1] straints apply in addition to primary key
constraints .

199

5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final Release Annotations for Object/Relational Mapping

Example 1:

@Entity public class Employee {

@TableGenerator(
name="empGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

@lId
@GeneratedValue(strategy=TABLE, generator="empGen")
public int id;

}

Example 2:

@Entity public class Address {

@TableGenerator(
name="addressGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="ADDR_ID")
@lId
@GeneratedValue(strategy=TABLE, generator="addressGen")
public int id;

5/2/06 200

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Final Release Metadata for

9.2 Examples of the Application of Annotations for
Object/Relational Mapping

9.2.1 Examples of Simple Mappings

@Entity
public class Customer {

@Ild @GeneratedValue(strategy=AUTO) Long id;

@Version protected int version;

@ManyToOne Address address;

@Basic String description;

@OneToMany(targetEntity=com.acme.Order.class,
mappedBy="customer")

Collection orders = new Vector();

@ManyToMany(mappedBy="customers")

Set<DeliveryService> serviceOptions = new HashSet();

public Long getld() { return id; }

public Address getAddress() { return address; }
public void setAddress(Address addr) {
this.address = addr;

}

public String getDescription() { return description; }
public void setDescription(String desc) {
this.description = desc;

public Collection getOrders() { return orders; }

public Set<DeliveryService> getServiceOptions() {
return serviceOptions;

@Entity
public class Address {

private Long id;
private int version;
private String street;

@Ild @GeneratedValue(strategy=AUTO)
public Long getld() { return id; }
protected void setld(Long id) { this.id = id; }

@Version

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

201 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final ReleaseExamples of the Application of Annotations for

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

}

@Entity
public class Order {

private Long id;

private int version;
private String itemName;
private int quantity;
private Customer cust;

@Ild @GeneratedValue(strategy=AUTO)
public Long getld() { return id; }
public void setld(Long id) { this.id = id; }

@Version

protected int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

public String getltemName() { return itemName; }

public void setltemName(String itemName) {
this.itemName = itemName;

}

public int getQuantity() { return quantity; }
public void setQuantity(int quantity) {
this.quantity = quantity;

@ManyToOne

public Customer getCustomer() { return cust; }

public void setCustomer(Customer cust) {
this.cust = cust;

}

}

@Entity
@Table(name="DLVY_SVC")
public class DeliveryService {

private String serviceName;
private int priceCategory;
private Collection customers;

@Id

public String getServiceName() { return serviceName; }

public void setServiceName(String serviceName) {
this.serviceName = serviceName;

}

public int getPriceCategory() { return priceCategory; }

5/2/06 202

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Final Release Metadata for

public void setPriceCategory(int priceCategory) {
this.priceCategory = priceCategory;

@ManyToMany(targetEntity=com.acme.Customer.class)

@JoinTable(name="CUST_DLVRY")

public Collection getCustomers() { return customers; }

public setCustomers(Collection customers) {
this.customers = customers;

}
}

203 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final ReleaseExamples of the Application of Annotations for

9.2.2 A More Complex Example

[***x Employee class *****/

@Entity
@Table(name="EMPL")
@SecondaryTable(name="EMP_SALARY",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID",
referencedColumnName="ID"))
public class Employee implements Serializable {

private Long id;

private int version;

private String name;

private Address address;

private Collection phoneNumbers;
private Collection<Project> projects;
private Long salary;

private EmploymentPeriod period;

@Id @GeneratedValue(strategy=TABLE)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version
@Column(name="EMP_VERSION", nullable=false)
public int getVersion() { return version; }
protected void setVersion(int version) {
this.version = version;

}

@Column(name="EMP_NAME", length=80)
public String getName() { return name; }
public void setName(String name) { this.name = name; }

@ManyToOne(cascade=PERSIST, optional=false)
@JoinColumn(name="ADDR_ID",
referencedColumnName="ID", nullable=false)
public Address getAddress() { return address; }
public void setAddress(Address address) {
this.address = address;

}

@OneToMany(targetEntity=com.acme.PhoneNumber.class,
cascade=ALL, mappedBy="employee")
public Collection getPhoneNumbers() { return phoneNumbers; }
public void setPhoneNumbers(Collection phoneNumbers) {
this.phoneNumbers = phoneNumbers;

@ManyToMany(cascade=PERSIST, mappedBy="employees")
@JoinTable(
name="EMP_PROJ",
joinColumns=@JoinColumn(
name="EMP_ID", referencedColumnName="ID"),
inverseJoinColumns=@JoinColumn(
name="PROJ_ID", referencedColumnName="ID"))
public Collection<Project> getProjects() { return projects; }
public void setProjects(Collection<Project> projects) {

5/2/06

204

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Final Release

this.projects = projects;

@Column(name="EMP_SAL", table="EMP_SALARY")
public Long getSalary() { return salary; }
public void setSalary(Long salary) {

this.salary = salary;

@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate",
column=@Column(hame="EMP_START")),
@AttributeOverride(name="endDate",
column=@Column(name="EMP_END"))

)
public EmploymentPeriod getEmploymentPeriod() {
return period;

}
public void setEmploymentPeriod(EmploymentPeriod period) {
this.period = period;

[F**** Address class *****/

@Entity
public class Address implements Serializable {

}

private Integer id;
private int version;
private String street;
private String city;

@Ild @GeneratedValue(strategy=IDENTITY)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version @Column(name="VERS", nullable=false)
public int getVersion() { return version; }
protected void setVersion(int version) {

this.version = version;

@Column(name="RUE")

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

@Column(name="VILLE")
public String getCity() { return city; }
public void setCity(String city) { this.city = city; }

[***** PhoneNumber class *****/

@Entity

Metadata for

205

5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final ReleaseExamples of the Application of Annotations for

@Table(hname="PHONE")
public class PhoneNumber implements Serializable {

private String number;
private int phoneType;
private Employee employee;

@Id

public String getNumber() { return number; }

public void setNumber(String number) {
this.number = number;

}

@Column(name="PTYPE")

public int getPhonetype() { return phonetype; }

public void setPhoneType(int phoneType) {
this.phoneType = phoneType;

@ManyToOne(optional=false)

@JoinColumn(name="EMP_ID", nullable=false)

public Employee getEmployee() { return employee; }

public void setEmployee(Employee employee) {
this.employee = employee;

[*¥***x Project class *****/

@Entity

@Inheritance(strategy=JOINED)
DiscriminatorValue("Proj")
@DiscriminatorColumn(name="DISC")
public class Project implements Serializable {

private Integer projld;

private int version;

private String name;

private Set<Employee> employees;

@Ild @GeneratedValue(strategy=TABLE)
public Integer getld() { return projld; }
protected void setld(Integer id) { this.projld = id; }

@Version
public int getVersion() { return version; }
protected void setVersion(int version) { this.version = version; }

@Column(hame="PROJ_NAME")
public String getName() { return name; }
public void setName(String name) { this.name = name; }

@ManyToMany(mappedBy="projects")

public Set<Employee> getEmployees() { return employees; }

public void setEmployees(Set<Employee> employees) {
this.employees = employees;

5/2/06 206

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Final Release Metadata for

[***** GovernmentProject subclass *****/

@Entity

@Table(name="GOVT_PROJECT")

@DiscriminatorValue("GovtProj")

@PrimaryKeyJoinColumn(name="GOV_PROJ_ID",
referencedColumnName="ID")

public class GovernmentProject extends Project {

private String filelnfo;

@Column(name="INFQO")
public String getFilelnfo() { return filelnfo; }
public void setFileInfo(String filelnfo) {
this.fileInfo = fileInfo;
}
}

[¥**** CovertProject subclass *****/

@Entity

@Table(name="C_PROJECT")

@DiscriminatorValue("CovProj")

@PrimaryKeyJoinColumn(name="COV_PROJ_ID",
referencedColumnName="|D")

public class CovertProject extends Project {

private String classified,;
public CovertProject() { super(); }

public CovertProject(String classified) {
this();
this.classified = classified;

}

@Column(updatable=false)

public String getClassified() { return classified; }

protected void setClassified(String classified) {
this.classified = classified;

[***** EmploymentPeriod class *****/

@Embeddable
public class EmploymentPeriod implements Serializable {

private Date start;
private Date end;

@Column(nullable=false)

public Date getStartDate() { return start; }

public void setStartDate(Date start) {
this.start = start;

207 5/2/06

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Final ReleaseExamples of the Application of Annotations for

}

public Date getEndDate() { return end; }
public void setEndDate(Date end) {
this.end = end;

5/2/06 208

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

Chapter 10

10.1

XML Descriptor

The XML descriptor is intended to serve as both an alternative to and an overriding mecha-
nism for Java language metadata annotations.

XML Overriding Rules

This section defines the rules that apply when the XML descriptor is used to override annotations, and
the rules pertaining to the interaction of XML elements specified as subelements péris-
tence-unit-defaults , entity-mappings , entity , mapped-superclass , and
embeddable elements.

If the xml-mapping-metadata-complete subelement of th@ersistence-unit-meta-

data element is specified, the complete set of mapping metadata for the persistence unit is contained in
the XML mapping files for the persistence unit, and annotations on the classes are ignored. When
xml-map i;]g-metadata-complete is specified and XML elements are omitted, the default val-

ues apply ‘..

[47]

If the xml-mapping-metadata-complete element is specified, amyetadata-complete attributes specified within
theentity , mapped-superclass , andembeddable elements are ignored.

209 5/2/06

Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Final Release XML Overriding Rules

10.1.1 persistence-unit-defaults Subelements

10.1.1.1 schema

Theschema subelement applies to all entities, table generators, and join tables in the persistence unit.

The schema subelement is overridden by asghema subelement of thentity-mappings ele-
ment; anyschema element explicitly specified in th€able or SecondaryTable annotation on an
entity or anyschema attribute on anyable or secondary-table subelement defined within an
entity element; anyschema element explicitly specified in aableGenerator annotation or
table-generator subelement; and angchema element explicitly specified in doinTable
annotation ojoin-table subelement.

10.1.1.2 catalog

Thecatalog subelement applies to all entities, table generators, and join tables in the persistence unit.

The catalog subelement is overridden by acgtalog subelement of thentity-mappings
element; anycatalog element explicitly specified in th€able or SecondaryTable annotation
on an entity or anycatalog attribute on anytable or secondary-table subelement defined
within anentity XML element; anycatalog element explicitly specified in @ableGenerator
annotation ottable-generator subelement; and armgatalog element explicitly specified in a
JoinTable annotation ojoin-table subelement.

10.1.1.3 access

Theaccess subelement applies to all managed classes in the persistence unit.

Theaccess subelement is overridden by the use of any annotations specifying mapping information
on the fields or properties of the entity class, by angess subelement of thentity-mappings

element, or by anyaccess attribute defined within arentity , mapped-superclass , or
embeddable XML element.

10.1.1.4 cascade-persist

The cascade-persist subelement applies to all relationships in the persistence unit.

Specifying this subelement adds the cascade persist option to all relationships in addition to any settings
specified in annotations or XML.

The cascade-persist subelement may not be overridden in this release.

The ability to override theascade-persist of thepersistence-unit-defaults
element will be added in a future release of this specification.

5/2/06

210

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

10.1.1.5 entity-listeners
The entity-listeners subelement defines default entity listeners for the persistence unit. These
entity listeners are called before any other entity listeners for an entity unless the entity listener order is
overridden within amapped-superclass or entity element, or theExcludeDefaultLis-
teners annotation is present on the entity or mapped superclass or if the
exclude-default-listeners subelement is specified within the correspondemgity or
mapped-superclass XML element.

10.1.2 Other Subelements of the entity-mappings element

10.1.2.1 package

The package subelement specifies the package of the classes listed within the subelements and
attributes of the same mapping file only. Ti@ckage subelement is overridden if the fully qualified
class name is specified for a class and the two disagree.

10.1.2.2 schema
Theschema subelement applies only to the entities listed within the same mapping file.

The schema subelement is overridden by asghema element explicitly specified in th&able or
SecondaryTable annotation on an entity listed within the mapping file, or aniema attribute on
anytable orsecondary-table subelement defined within an suchemtity element.

10.1.2.3 catalog
Thecatalog subelement applies only to the entities listed within the same mapping file.

Thecatalog subelement is overridden by aogtalog element explicitly specified in thEable or
SecondaryTable annotation on an entity listed within the mapping file, or @ayalog attribute
on anytable orsecondary-table subelement defined within suchemtity element.

10.1.2.4 access
Theaccess subelement applies to the managed classes listed within the same mapping file.

Theaccess subelement is overridden by the use of any annotations specifying mapping information
on the fields or properties of the entity class or by aogess attribute defined within aentity
mapped-superclass , orembeddable XML element.

10.1.2.5 sequence-generator
The generator defined by teequence-generator subelement applies to the persistence unit. Itis
undefined if multiple mapping files for the persistence unit contain generators of the same name.

The generator defined is added to any generators defined in annotations. If a generator of the same name
is defined in annotations, the generator defined by this subelement overrides that definition.

10.1.2.6 table-generator

The generator defined by thable-generator subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

211 5/2/06

Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Final Release XML Overriding Rules

The generator defined is added to any generators defined in annotations. If a generator of the same name
is defined in annotations, the generator defined by this subelement overrides that definition.

10.1.2.7 named-query

The named query defined by thamed-query subelement applies to the persistence unit. Itis unde-
fined if multiple mapping files for the persistence unit contain named queries of the same name.

The named query defined is added to the named queries defined in annotations. If a named query of the
same name is defined in annotations, the named query defined by this subelement overrides that defini-
tion.

10.1.2.8 named-native-query

The named native query defined by tremed-native-query subelement applies to the persistence
unit. Itis undefined if multiple mapping files for the persistence unit contain named queries of the same
name.

The named native query defined is added to the named native queries defined in annotations. If a named
guery of the same name is defined in annotations, the named query defined by this subelement overrides
that definition.

10.1.2.9 sql-result-set-mapping

The SQL result set mapping defined by #tg-result-set-mapping subelement applies to the
persistence unit. Itis undefined if multiple mapping files for the persistence unit contain SQL result set
mappings of the same name.

The SQL result set mapping defined is added to the SQL result set mappings defined in annotations. If
a SQL result set mapping of the same name is defined in annotations, the SQL result set mapping
defined by this subelement overrides that definition.

10.1.2.10 entity

Theentity subelement defines an entity of the persistence unit. It is undefined if multiple mapping
files for the persistence unit contain entries for the same entity.

The entity class may or may not have been annotat&htiy . The subelements of trentity ele-
ment override as specified in section 10.1.3.

10.1.2.11 mapped-superclass

The mapped-superclass subelement defines a mapped superclass of the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain entries for the same mapped super-
class.

The mapped superclass may or may not have been annotakéabpedSuperclass . The subele-
ments of thanapped-superclass element override as specified in section 10.1.4.

10.1.2.12 embeddable

The embeddable subelement defines an embeddable class of the persistence unit. It is undefined if
multiple mapping files for the persistence unit contain entries for the same embeddable class.

5/2/06

212

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

Theembeddable class may or may not have been annotateBrabeddable . The subelements of
theembeddable element override as specified in section 10.1.5.

10.1.3 entity Subelements and Attritutes

These apply only to the entity for which they are subelements or attributes, unless otherwise specified
below.

10.1.3.1 metadata-complete

If the metadata-complete attribute is specified on thentity element itself, any annotations on
the entity class (and its fields and properties) are ignored. WWetadata-complete is specified
on theentity element and XML elements are omitted, the default values apply to the given class.

10.1.3.2 access

Theaccess attribute defines the access type for the entity. déeess attribute overrides any access
type specified by th@ersistence-unit-defaults element orentity-mappings element
for the given entity.

Portable applications must not specify @iecess attribute if mapping annotations have been applied
to the fields or properties of the entity class and the value differs from the access type defined by means
of annotations.

Portable applications must not use more than one access type within an entity hierarchy.

10.1.3.3 name
The name attribute defines the entity name. fhme attribute overrides the value of the entity name
defined by thename element of theEntity = annotation (whether explicitly specified or defaulted).
Caution must be exercised in overriding the entity name,as doing so may cause applications to break.

10.1.3.4 table

Thetable subelement overrides afyable annotation (including defaultefable values) on the
entity.

10.1.3.5 secondary-table
The secondary-table subelement overrides aBecondaryTable and SecondaryTables

annotations (including default&®kcondaryTable values) on the entity.

10.1.3.6 primary-key-join-column

The primary-key-join-column subelement overrides alPrimaryKeyJoinColumn and
PrimaryKeyJoinColumns annotations (including defaultdtimaryKeyJoinColumn values)
on the entity.

10.1.3.7 id-class
Theid-class subelement overrides aigClass annotation specified on the entity.

213 5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release XML Overriding Rules

10.1.3.8 inheritance

The inheritance subelement overrides aninheritance annotation (including defaulted
Inheritance values) on the entity.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an
annotation or XML element).

10.1.3.9 discriminator-value
The discriminator-value subelement overrides anRiscriminatorValue annotations
(including defaultediscriminatorValue values) on the entity.

10.1.3.10 discriminator-column
The discriminator-column subelement overrides aryiscriminatorColumn annotation
(including defaultediscriminatorColumn values) on the entity.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an
annotation or XML element).

10.1.3.11 sequence-generator
The generator defined by tlsequence-generator subelement is added to any generators defined
in annotations and any other generators defined in XML. If a generator of the same name is defined in
annotations, the generator defined by this subelement overrides that definition.

The generator defined by tkequence-generator subelement applies to the persistence unit. Itis
undefined if multiple mapping files for the persistence unit contain generators of the same name.

10.1.3.12 table-generator
The generator defined by thable-generator subelement is added to any generators defined in
annotations and any other generators defined in XML. If a generator of the same name is defined in
annotations, the generator defined by this subelement overrides that definition.

The generator defined by thable-generator subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

10.1.3.13 attribute-override
The attribute-override subelement is additive to attributeOverride or Attribu-
teOverrides annotations on the entity. It overrides afftributeOverride elements for the
same attribute name.

10.1.3.14 association-override
The association-override subelement is additive to anjssociationOverride or
AssociationOverrides a nnotations on the entity. It overrides aAgsociationOverride
elements for the same attribute name.

5/2/06 214

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

10.1.3.15 named-query

The named query defined by thamed-query subelement is added to any named queries defined in
annotations, and any other named queries defined in XML. If a named query of the same name is
defined in annotations, the named query defined by this subelement overrides that definition.

The named query defined by thamed-query subelement applies to the persistence unit. It is unde-
fined if multiple mapping files for the persistence unit contain named queries of the same name.

10.1.3.16 named-native-query

The named query defined by thamed-native-query subelement is added to any named queries
defined in annotations, and any other named queries defined in XML. If a named query of the same
name is defined in annotations, the named query defined by this subelement overrides that definition.

The named native query defined by treemed-native-query subelement applies to the persistence
unit. Itis undefined if multiple mapping files for the persistence unit contain named queries of the same
name.

10.1.3.17 sql-result-set-mapping
The SQL result set mapping defined by swg-result-set-mapping is added to the SQL result
set mappings defined in annotations, and any other SQL result set mappings defined in XML. If a SQL
result set mapping of the same name is defined in annotations, the SQL result set mapping defined by
this subelement overrides that definition.

The SQL result set mapping defined by #w-result-set-mapping subelement applies to the

persistence unit. Itis undefined if multiple mapping files for the persistence unit contain SQL result set
mappings of the same name.

10.1.3.18 exclude-default-listeners
Theexclude-default-listeners subelement applies whether or not fecludeDefault-
Listeners annotation was specified on the entity.

This element causes the default entity listeners to be excluded for the entity and its subclasses.

10.1.3.19 exclude-superclass-listeners
The exclude-superclass-listeners subelement applies whether or not thrcludeSu-
perclassListeners annotation was specified on the entity.

This element causes any superclass listeners to be excluded for the entity and its subclasses.

10.1.3.20 entity-listeners
Theentity-listeners subelement overrides afntityL isteners annotation on the entity.

These listeners apply to the entity and its subclasses unless otherwise excluded.

10.1.3.21 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update,

215 5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release XML Overriding Rules

post-load
These subelements override any lifecycle callback methods defined by the corresponding annotations
on the entity.

10.1.3.22 id
Theid subelement overrides the mapping for the specified field or property.

10.1.3.23 embedded-id

Theembedded-id subelement overrides the mapping for the specified field or property.

10.1.3.24 basic
Thebasic subelement overrides the mapping for the specified field or property.

10.1.3.25 version
Theversion subelement overrides the mapping for the specified field or property.

10.1.3.26 many-to-one
Themany-to-one subelement overrides the mapping for the specified field or property.

10.1.3.27 one-to-many
Theone-to-many subelement overrides the mapping for the specified field or property.

10.1.3.28 one-to-one
Theone-to-one subelement overrides the mapping for the specified field or property.

10.1.3.29 many-to-many
Themany-to-many subelement overrides the mapping for the specified field or property.

10.1.3.30 embedded
Theembedded subelement overrides the mapping for the specified field or property.

10.1.3.31 transient
Thetransient subelement overrides the mapping for the specified field or property.

10.1.4 mapped-supeclass Subelements and Attribtes

These apply only to the mapped-superclass for which they are subelementsor attributes, unless other-
wise specified below.

10.1.4.1 metadata-complete

If the metadata-complete attribute is specified on theapped-superclass element itself, any
annotations on the mapped superclass (and its fields and properties) are ignoredméthen
data-complete is specified on thenapped-superclass element and XML elements are omit-
ted, the default values apply to the given class.

5/2/06 216

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

10.1.4.2 access

Theaccess attribute defines the access type for the mapped superclasactbss attribute over-
rides any access type specified by fleesistence-unit-defaults element oentity-map-
pings element for the given mapped superclass.

Portable applications must not specify tecess attribute if mapping annotations have been applied
to the fields or properties of the mapped superclass and the value differs from the access type defined by
means of annotations.

Portable applications must not use more than one access type within an entity hierarchy.

10.1.4.3 id-class
Theid-class subelement overrides atgClass annotation specified on the mapped superclass.

10.1.4.4 exclude-default-listeners
Theexclude-default-listeners subelement applies whether or not txcludeDefault-
Listeners annotation was specified on the mapped superclass.

This element causes the default entity listeners to be excluded for the mapped superclass and its sub-
classes.

10.1.4.5 exclude-superclass-listeners
The exclude-superclass-listeners subelement applies whether or not tBrcludeSu-
perclassListeners annotation was specified on the mapped superclass.

This element causes any superclass listeners to be excluded for the mapped superclass and its sub-
classes.

10.1.4.6 entity-listeners
The entity-listeners subelement overrides angntityListeners annotation on the
mapped superclass.

These listeners apply to the mapped superclass and its subclasses unless otherwise excluded.

10.1.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update,
post-load

These subelements override any lifecycle callback methods defined by the corresponding annotations
on the mapped superclass.

10.1.4.8 id

Theid subelement overrides the mapping for the specified field or property.

10.1.4.9 embedded-id
Theembedded-id subelement overrides the mapping for the specified field or property.

10.1.4.10 basic
Thebasic subelement overrides the mapping for the specified field or property.

217 5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release XML Overriding Rules

10.1.4.11 version
Theversion subelement overrides the mapping for the specified field or property.

10.1.4.12 many-to-one
Themany-to-one subelement overrides the mapping for the specified field or property.

10.1.4.13 one-to-many
Theone-to-many subelement overrides the mapping for the specified field or property.

10.1.4.14 one-to-one
Theone-to-one subelement overrides the mapping for the specified field or property.

10.1.4.15 many-to-many
Themany-to-many subelement overrides the mapping for the specified field or property.

10.1.4.16 embedded

Theembedded subelement overrides the mapping for the specified field or property.

10.1.4.17 transient
Thetransient ~ subelement overrides the mapping for the specified field or property.

10.1.5 embeddable Subelements and Attribtes
These apply only to the embeddable for which they are subelements or attributes.

10.1.5.1 metadata-complete

If the metadata-complete attribute is specified on thembeddable element itself, any annota-
tions on the embeddable class (and its fields and properties) are ignored. rii¢tetata-com-

plete is specified on thembeddable element and XML elements are omitted, the default values
apply to the given class.

10.1.5.2 access

The access attribute defines the access type for the embeddable classactess attribute over-
rides any access type specified by flegsistence-unit-defaults element oentity-map-
pings element for the given embeddable class.

Portable applications must not specify tecess attribute if mapping annotations have been applied
to the fields or properties of the embeddable class or the entity with which it is associated and the value
differs from the access type defined by means of annotations.

Portable applications must not use more than one access type within an entity hierarchy.

10.1.5.3 basic
Thebasic subelement overrides the mapping for the specified field or property.

5/2/06 218

Sun Microsystems, Inc.

XML Overriding Rules Enterprise JavaBeans 3.0, Final Release XML Descriptor

10.1.5.4 transient
Thetransient ~ subelement overrides the mapping for the specified field or property.

219 5/2/06

Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Final Release

10.2 XML Schema

XML Schema

This section provides the XML schema for use with the persistence API.

<?xml version="1.0" encoding="UTF-8"?>
<l-- Java Persistence API object-relational mapping file schema -->
<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence/orm"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.0">

<xsd:annotation>
<xsd:documentation>
@#)orm_1_0.xsd 1.0 Feb 14 2006
</xsd:documentation>
</xsd:annotation>
<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence object-relational
mapping file.

The file may be named "META-INF/orm.xml" in the persistence
archive or it may be named some other name which would be
used to locate the file as resource on the classpath.

]]></xsd:documentation>
</xsd:annotation>

<xsd:complexType name="emptyType"/>

<xsd:simpleType name="versionType">
<xsd:restriction base="xsd:token">
<xsd:pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>

<l-- *kkkkkkkk *okkkok * *kkkkkkkk * >

<xsd:element name="entity-mappings">
<xsd:complexType>
<xsd:annotation>
<xsd:documentation>

The entity-mappings element is the root element of an mapping
file. It contains the following four types of elements:

1. The persistence-unit-metadata element contains metadata
for the entire persistence unit. It is undefined if this element
occurs in multiple mapping files within the same persistence unit.

2. The package, schema, catalog and access elements apply to all of
the entity, mapped-superclass and embeddable elements defined in
the same file in which they occur.

3. The sequence-generator, table-generator, named-query,
named-native-query and sql-result-set-mapping elements are global

to the persistence unit. It is undefined to have more than one
sequence-generator or table-generator of the same name in the same
or different mapping files in a persistence unit. It is also

undefined to have more than one named-query or named-native-query
of the same name in the same or different mapping files in a

5/2/06

220

Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Final Release

persistence unit.

4. The entity, mapped-superclass and embeddable elements each define
the mapping information for a managed persistent class. The mapping
information contained in these elements may be complete or it may

be partial.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string"
minOccurs="0"/>
<xsd:element name="persistence-unit-metadata”
type="orm:persistence-unit-metadata"
minOccurs="0"/>
<xsd:element name="package" type="xsd:string"
minOccurs="0"/>
<xsd:element name="schema" type="xsd:string"
minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string"
minOccurs="0"/>
<xsd:element name="access" type="orm:access-type"
minOccurs="0"/>
<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="named-query" type="orm:named-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="named-native-query" type="orm:named-native-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="sql-result-set-mapping"
type="orm:sql-result-set-mapping"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="mapped-superclass" type="orm:mapped-superclass"”
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="entity" type="orm:entity"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embeddable" type="orm:embeddable"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="version" type="orm:versionType"
fixed="1.0" use="required"/>
</xsd:complexType>
</xsd:element>

<l-- * * * * >

<xsd:complexType name="persistence-unit-metadata">
<xsd:annotation>
<xsd:documentation>

Metadata that applies to the persistence unit and not just to
the mapping file in which it is contained.

If the xml-mapping-metadata-complete element is specified then
the complete set of mapping metadata for the persistence unit
is contained in the XML mapping files for the persistence unit.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="xml-mapping-metadata-complete" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="persistence-unit-defaults"
type="orm:persistence-unit-defaults"

XML Descriptor

221

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<I-- * * * * >

<xsd:complexType name="persistence-unit-defaults">
<xsd:annotation>
<xsd:documentation>

These defaults are applied to the persistence unit as a whole
unless they are overridden by local annotation or XML
element settings.

schema - Used as the schema for all tables or secondary tables
that apply to the persistence unit
catalog - Used as the catalog for all tables or secondary tables
that apply to the persistence unit
access - Used as the access type for all managed classes in
the persistence unit
cascade-persist - Adds cascade-persist to the set of cascade options
in entity relationships of the persistence unit
entity-listeners - List of default entity listeners to be invoked
on each entity in the persistence unit.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="schema" type="xsd:string"
minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string"
minOccurs="0"/>
<xsd:element name="access" type="orm:access-type"
minOccurs="0"/>
<xsd:element name="cascade-persist" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l-- >

<xsd:complexType name="entity">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for an entity. Is allowed to be
sparsely populated and used in conjunction with the annotations.
Alternatively, the metadata-complete attribute can be used to
indicate that no annotations on the entity class (and its fields

or properties) are to be processed. If this is the case then

the defaulting rules for the entity and its subelements will

be recursively applied.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
String name() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="table" type="orm:table"
minOccurs="0"/>

XML Schema

5/2/06 222

Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Final Release

<xsd:element name="secondary-table" type="orm:secondary-table"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
<xsd:element name="inheritance" type="orm:inheritance" minOccurs="0"/>
<xsd:element name="discriminator-value" type="orm:discriminator-value"
minOccurs="0"/>
<xsd:element name="discriminator-column"
type="orm:discriminator-column"
minOccurs="0"/>
<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0"/>
<xsd:element name="named-query" type="orm:named-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="named-native-query" type="orm:named-native-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="sql-result-set-mapping"
type="orm:sql-result-set-mapping"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="exclude-default-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="exclude-superclass-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update” minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="association-override"
type="orm:association-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="attributes" type="orm:attributes" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="metadata-complete" type="xsd:boolean"/>

</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="attributes">

<xsd:annotation>
<xsd:documentation>

This element contains the entity field or property mappings.

It may be sparsely populated to include only a subset of the
fields or properties. If metadata-complete for the entity is true
then the remainder of the attributes will be defaulted according
to the default rules.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:choice>

XML Descriptor

223

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

<xsd:element name="id" type="orm:id"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embedded-id" type="orm:embedded-id"
minOccurs="0"/>

</xsd:choice>

<xsd:element name="basic" type="orm:basic"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="version" type="orm:version"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="many-to-one" type="orm:many-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-many" type="orm:one-to-many"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-one" type="orm:one-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="many-to-many" type="orm:many-to-many"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="embedded" type="orm:embedded"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="transient" type="orm:transient"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<l-- * * * * >

<xsd:simpleType name="access-type">
<xsd:annotation>
<xsd:documentation>

This element determines how the persistence provider accesses the
state of an entity or embedded object.

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="PROPERTY"/>
<xsd:enumeration value="FIELD"/>
</xsd:restriction>
</xsd:simpleType>

<l-- >

<xsd:complexType name="entity-listeners">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
Class][] value();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="entity-listener" type="orm:entity-listener"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="entity-listener">
<xsd:annotation>
<xsd:documentation>

XML Schema

5/2/06 224

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

Defines an entity listener to be invoked at lifecycle events
for the entities that list this listener.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="pre-persist">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="post-persist">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="pre-remove">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="post-remove">
<xsd:annotation>
<xsd:documentation>

XML Descriptor

225

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="pre-update">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="post-update">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="post-load">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<loe kk * * >

<xsd:complexType name="query-hint">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
String name();
String value();

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="value" type="xsd:string" use="required"/>

XML Schema

5/2/06 226

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="named-query">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {

String name();

String query();

QueryHint[] hints() default {};
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="query" type="xsd:string"/>
<xsd:element name="hint" type="orm:query-hint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="named-native-query">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {

String name();

String query();

QueryHint[] hints() default {};

Class resultClass() default void.class;

String resultSetMapping() default "'; //named SqlResultSetMapping

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="query" type="xsd:string"/>
<xsd:element name="hint" type="orm:query-hint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="result-class" type="xsd:string"/>
<xsd:attribute name="result-set-mapping" type="xsd:string"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="sql-result-set-mapping">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface SqlResultSetMapping {
String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

}

</xsd:documentation>

XML Descriptor

227

5/2/06

Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Final Release

XML Descriptor

</xsd:annotation>

<xsd:sequence>
<xsd:element name="entity-result" type="orm:entity-result"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="column-result" type="orm:column-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
* * >

< R
<xsd:complexType name="entity-result">

<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {

Class entityClass();

FieldResult[] fields() default {};

String discriminatorColumn() default ";

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="field-result" type="orm:field-result"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="entity-class" type="xsd:string" use="required"/>
<xsd:attribute name="discriminator-column" type="xsd:string"/>

</xsd:complexType>

<l--

<xsd:complexType name="field-result">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();

</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="column" type="xsd:string" use="required"/>
</xsd:complexType>

<l--

<xsd:complexType name="column-result">

<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {

String name();

</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

228

5/2/06

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

<l--

<xsd:complexType name="table">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
String name() default "";
String catalog() default ";

String schema() default ";
UniqueConstraint[] uniqueConstraints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="unique-constraint" type="orm:unigue-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="secondary-table">

<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
String name();
String catalog() default ";
String schema() default ";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
UniqueConstraint[] uniqueConstraints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="unique-constraint" type="orm:unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
</xsd:complexType>

<l--

<xsd:complexType name="unique-constraint">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface UniqueConstraint {
String[] columnNames();

XML Descriptor

229

5/2/06

Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Final Release

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column-name" type="xsd:string"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="column">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default "";

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "™;

String table() default ";

int length() default 255;

int precision() default 0; // decimal precision

int scale() default O; // decimal scale

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
<xsd:attribute name="precision" type="xsd:int"/>
<xsd:attribute name="scale" type="xsd:int"/>
</xsd:complexType>

<I-- * * * * >

<xsd:complexType name="join-column">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default "";

String referencedColumnName() default "";

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ™;

String table() default ";

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="referenced-column-name" type="xsd:string"/>

<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>

XML Schema

5/2/06

230

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release XML Descriptor

<xsd:attribute name="insertable" type="xsd:boolean"/>

<xsd:attribute name="updatable" type="xsd:boolean"/>

<xsd:attribute name="column-definition" type="xsd:string"/>

<xsd:attribute name="table" type="xsd:string"/>
</xsd:complexType>

<l-- * * * * >

<xsd:simpleType name="generation-type">
<xsd:annotation>
<xsd:documentation>

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="TABLE"/>
<xsd:enumeration value="SEQUENCE"/>
<xsd:enumeration value="IDENTITY"/>
<xsd:enumeration value="AUTQ"/>

</xsd:restriction>

</xsd:simpleType>

<l-- * * * * >

<xsd:complexType name="attribute-override">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {

String name();

Column column();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="association-override">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AssociationOverride {

String name();

JoinColumn[] joinColumns();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

231 5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

<xsd:complexType name="id-class">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {
Class value();

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="class" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="id">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column"
minOccurs="0"/>
<xsd:element name="generated-value" type="orm:generated-value"
minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal"
minOccurs="0"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0"/>
<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="embedded-id">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >
<xsd:complexType name="transient">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)

XML Schema

5/2/06 232

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

public @interface Transient {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="version">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

</xsd.documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="column" type="orm:column" minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="basic">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER,;

boolean optional() default true;

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="column" type="orm:column" minOccurs="0"/>

<xsd:choice>
<xsd:element name="lob" type="orm:lob" minOccurs="0"/>

<xsd:element name="temporal" type="orm:temporal” minOccurs="0"/>
<xsd:element name="enumerated" type="orm:enumerated" minOccurs="0"/>

</xsd:choice>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
</xsd:complexType>

<l-- * * * * >

<xsd:simpleType name="fetch-type">
<xsd:annotation>
<xsd:documentation>

public enum FetchType { LAZY, EAGER };

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="LAZY"/>
<xsd:enumeration value="EAGER"/>
</xsd:restriction>

XML Descriptor

233

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

</xsd:simpleType>

<l-- * * * * >

<xsd:complexType name="lob">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {}

</xsd:documentation>
</xsd:annotation>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="temporal">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {
TemporalType value();

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:temporal-type"/>
</xsd:simpleType>

<l-- >

<xsd:simpleType name="temporal-type">
<xsd:annotation>
<xsd:documentation>

public enum TemporalType {
DATE, // java.sql.Date
TIME, // java.sql.Time
TIMESTAMP // java.sql.Timestamp

}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="DATE"/>
<xsd:enumeration value="TIME"/>
<xsd:enumeration value="TIMESTAMP"/>
</xsd:restriction>
</xsd:simpleType>

<l-- * * * * >

<xsd:simpleType name="enumerated">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {
EnumType value() default ORDINAL;

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:enum-type"/>

XML Schema

5/2/06 234

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

</xsd:simpleType>

<l-- * * * * >

<xsd:simpleType name="enum-type">
<xsd:annotation>
<xsd:documentation>

public enum EnumType {
ORDINAL,
STRING

}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="ORDINAL"/>
<xsd:enumeration value="STRING"/>
</xsd:restriction>
</xsd:simpleType>

<l-- >

<xsd:complexType nhame="many-to-one">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
</xsd:choice>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="cascade-type">
<xsd:annotation>
<xsd:documentation>

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="cascade-all" type="orm:emptyType"
minOccurs="0"/>

XML Descriptor

235

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

<xsd:element name="cascade-persist" type="orm:emptyType"
minOccurs="0"/>

<xsd:element name="cascade-merge" type="orm:emptyType"
minOccurs="0"/>

<xsd:element name="cascade-remove" type="orm:emptyType"
minOccurs="0"/>

<xsd:element name="cascade-refresh" type="orm:emptyType"
minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

<l-- -->

<xsd:complexType name="one-to-one">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;
String mappedBy() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
</xsd:choice>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<I-- * * * * >

<xsd:complexType name="one-to-many">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="order-by" type="orm:order-by"

XML Schema

5/2/06 236

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

minOccurs="0"/>
<xsd:element name="map-key" type="orm:map-key"
minOccurs="0"/>
<xsd:choice>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:choice>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="join-table">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinTable {
String name() default ";
String catalog() default ";
String schema() default ";
JoinColumn(] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};
UniqueConstraint[] uniqueConstraints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="inverse-join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="unique-constraint" type="orm:unigue-constraint
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="many-to-many">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default ";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

XML Descriptor

237

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

<xsd:element name="order-by" type="orm:order-by"
minOccurs="0"/>
<xsd:element name="map-key" type="orm:map-key"
minOccurs="0"/>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="generated-value">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {

GenerationType strategy() default AUTO;

String generator() default ",

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:generation-type"/>
<xsd:attribute name="generator" type="xsd:string"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="map-key">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
String name() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="order-by">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
String value() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<l-- >

XML Schema

5/2/06 238

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release

<xsd:complexType name="inheritance">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {
InheritanceType strategy() default SINGLE_TABLE;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:inheritance-type"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="inheritance-type">
<xsd:annotation>
<xsd:documentation>

public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS};

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="SINGLE_TABLE"/>
<xsd:enumeration value="JOINED"/>
<xsd:enumeration value="TABLE_PER_CLASS"/>

</xsd:restriction>

</xsd:simpleType>

<l-- >

<xsd:simpleType name="discriminator-value">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {
String value();

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<l-- -->

<xsd:simpleType name="discriminator-type">
<xsd:annotation>
<xsd:documentation>

public enum DiscriminatorType { STRING, CHAR, INTEGER };

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="STRING"/>
<xsd:enumeration value="CHAR"/>
<xsd:enumeration value="INTEGER"/>

</xsd:restriction>

</xsd:simpleType>

XML Descriptor

239

5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release

<l-- * * * * >

<xsd:complexType name="primary-key-join-column">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {

String name() default "";

String referencedColumnName() default "";

String columnDefinition() default ™;

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="referenced-column-name" type="xsd:string"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
</xsd:complexType>

<l-- * * * * >

<xsd:complexType name="discriminator-column">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default "DTYPE";
DiscriminatorType discriminatorType() default STRING;
String columnDefinition() default ™;
int length() default 31;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="discriminator-type" type="orm:discriminator-type"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
</xsd:complexType>

<I-- * * * * >

<xsd:complexType name="embeddable">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for embeddable objects. Is
allowed to be sparsely populated and used in conjunction with
the annotations. Alternatively, the metadata-complete attribute
can be used to indicate that no annotations are to be processed
in the class. If this is the case then the defaulting rules will

be recursively applied.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {}

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="attributes" type="orm:embeddable-attributes"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>

XML Schema

5/2/06 240

Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Final Release

<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="metadata-complete" type="xsd:boolean"/>
</xsd:complexType>

<I-- * * * * >

<xsd:complexType name="embeddable-attributes">
<xsd:sequence>
<xsd:element name="basic" type="orm:basic"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="transient" type="orm:transient"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l-- -->

<xsd:complexType name="embedded">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="mapped-superclass">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for a mapped superclass. Is
allowed to be sparsely populated and used in conjunction with
the annotations. Alternatively, the metadata-complete attribute
can be used to indicate that no annotations are to be processed
If this is the case then the defaulting rules will be recursively
applied.

@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass{}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
<xsd:element name="exclude-default-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="exclude-superclass-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>

XML Descriptor

241

5/2/06

Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Final Release

<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:element name="attributes" type="orm:attributes" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="class" type="xsd:string" use="required"/>

<xsd:attribute name="access" type="orm:access-type"/>

<xsd:attribute name="metadata-complete" type="xsd:boolean"/>

</xsd:complexType>

<l-- >

<xsd:complexType name="sequence-generator">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {

String name();

String sequenceName() default "";

int initialValue() default 1;

int allocationSize() default 50;

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="sequence-name" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="table-generator">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {

String name();

String table() default ";

String catalog() default ";

String schema() default ";

String pkColumnName() default "";

String valueColumnName() default "";

String pkColumnValue() default ";

int initialValue() default O;

int allocationSize() default 50;

UniqueConstraint[] uniqueConstraints() default {};

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="unique-constraint" type="orm:unigue-constraint"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="pk-column-name" type="xsd:string"/>
<xsd:attribute name="value-column-name" type="xsd:string"/>
<xsd:attribute name="pk-column-value" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>

XML Schema

5/2/06

242

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Final Release XML Descriptor

</xsd:complexType>

</xsd:schema>

243 5/2/06

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Final Release XML Schema

5/2/06 244

Sun Microsystems, Inc.

XML Schema

Chapter 11

Enterprise JavaBeans 3.0, Final Release

Related Documents

[1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]

Enterprise JavaBeans, v. 3.0. EJB Core Contracts and Requirements.

Related Documents

JSR-250: Common Annotations for the Java Platfdrtp://jcp.org/en/jsr/detail ?id=250

JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail ?id=175

Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.
Enterprise JavaBeans, v 2http://java.sun.com/products/ejb

JDBC 3.0 Specificatiottp://java.sun.com/products/jdbc

Enterprise JavaBeans, Simplified API, v $ifip://java.sun.com/products/ejb

JAR File Specificatiomttp://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

245

5/2/06

Sun Microsystems, Inc.

Related Documents Enterprise JavaBeans 3.0, Final Release XML Schema

5/2/06 246

Sun Microsystems, Inc.

Early Draft 1 Enterprise JavaBeans 3.0, Final Release Revision History

Appendix A ReViSion History

This appendix lists the significant changes that have been made during the development of the EJB 3.0
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Persistence APfrom single Early Draft 1 document.
Renamed dependent classes as "embedded classes".
Added support for EJB 2.1 style composite keys for entities.
Added support for BLOBs and CLOBs

Clarified rules for defaulting of O/R mapping when OneToOne, OneToMany, ManyToOne, and Many-
ToMany annotations are used.

247 5/2/06

Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Final Release Changes Since EDR 2

Clarified default mappings for non-relationship fields and properties.

Clarified exceptions for entity lifecycle operations dfidtityManager andQuery interface meth-
ods.

Clarified semantics afontains method.

Renaming of annotations for dependent objects to reflect "embedded" terminology.

Added Embeddedld and IdClass annotations to support composite keys.

Added AttributeOverride annotation to support embedded objects and embedded primary keys.
Added annotations to support BLOB/CLOB mappings.

Renamed GeneratorTable annotation as GeneratedldTable.

Added setFlushMode method to Query interface.

Added missing Transient annotation.

Rename create() method as persist() in EntityManager API, and CREATE as PERSIST in CascadeType
enum.

Provided full definition of EJB QL.

Removed POSITION, CHAR_LENGTH, and CHARACTER_LENGTH as redundant.
Added support for mapping of SQL query results.

Extended EJB QL queries to apply to embedded classes.

Added XML descriptor.

Added Related Documents section.

Updated numerous examples.

A.3 Changes Since EDR 2

Clearer formatting for description of merge operation.
Removed requirements for java.sql.Blob and java.sql.Clob.
Added java.util.Date and java.sql.Date as permitted primary key types.

Added introduction to O/R mapping metadata specification.

5/2/06 248

Sun Microsystems, Inc.

Changes Since EDR 2 Enterprise JavaBeans 3.0, Final Release Revision History

Removed primary annotation element from UniqueConstraint, Column, and JoinColumn annotations as
redundant.

Clarified that UniqueConstraint applies in addition to unique constraints entailed by primary key map-
pings.

Clarified that PostLoad method should be invoked after refresh.
Added caution about use of business logic in accessor methods when access=PROPERTY.
Clarified that precision and scale apply to decimal columns.

Editorial changes to remove implications that entity lifecycle operations entail implementation in terms
of a “state” model.

Removed entityType and version elements of Entity annotation.

Added note about the use of EJB QL bulk update and delete operations.
Clarified that fetch=LAZY is a hint; implementations may elect to prefetch.
Clarified that only a single version property is required to be supported per class.
Allowed persistent instance variables to be private.

Removed requirement that if access=FIELD, the fields in the primary key class must be public or pro-
tected.

Extended mapping defaults for fields and properties of byte[], Byte[], char[], and Character[] to Basic
mapping type.

Made TemporalType enum top-level; added NONE so that it can be used to specify Basic mapping for
temporal types.

Clarified that query execution methods getResultList and getSingleResult throw lllegalStateException
when called for EJB QL UPDATE or DELETE statements; executeUpdate throws lllegalStateException
when called for EJB QL SELECT statement.

Clarified that constructor names in EJB QL queries must be fully qualified.

Removed requirement for support of BIT_LENGTH function from EJB QL.

The executeUpdate method throws TransactionRequiredException if there is no active transaction.

Clarified that EJB QL delete operation does not cascade.

Added support for use of EntityManager in application-managed environments, including outside of
Java EE containers.

Added EntityManager bootstrapping APIs.

249 5/2/06

Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Final Release Changes Since EDR 2

Added support for extended persistence contexts.

Added support for non-entity classes in the entity inheritance hierarchy.

Added supported support for abstract entity classes in the entity inheritance hierarchy.
Added EmbeddableSuperclass annotation.

Clarifications to EntityManager and Query exceptions.

Added LEFT, EXISTS, ALL, ANY, SOME to EJB QL reserved identifiers.

Renamed InheritanceJoinColumn as PrimaryKeyJoinColumn. Removed usePKasFK from the One-
ToOne annotation, clarifying that PrimaryKeyJoinColumn can be used instead.

Clarified result types for aggregate functions.
Clarification of TRIM function and its arguments.

In OneToOne, OneToMany, ManyToOne, ManyToMany annotations, targetEntity type is Class, note
String.

Merge @Serialized annotation into @Basic.
Added discriminatorColumn element to @EntityResult
Instance variables allowed to be private, package visibility.

Removed restriction about use of identification variable for IS EMPTY in the FROM clause, since this
is no longer true given outer joins.

Removed restriction that @Table must have been explicitly specified if @SecondaryTable is used—this
is unnecessary, since defaults can be used.

Removed specified element for @Column: it is not needed.
Remove operation applied to removed entity is ignored.
EntityManager.find changed to return null if the entity does not exist.
EntityManager.contains doesn’t require a transaction be active.
Added @OrderBy, @MapKey annotations

Clarified rules regarding the availability of detached instances.
Added SIZE function to EJB QL.

Cleaned up EJB QL grammar.

5/2/06 250

Sun Microsystems, Inc.

Changes Since Public Draft Enterprise JavaBeans 3.0, Final Release Revision History

A4

Added optional hint to Basic and Lob annotations.

Added EntityManager.getReference().

EJB QL LIKE operator allows string-expressions.

Added chapters with contracts on packaging, deployment, and bootstrapping outside a container.
Merged GeneratedldTable into TableGenerator annotation to resolve overlap between the two.
Updated XML descriptor to match annotations.

Editorial sweep over document.

Changes Since Public Draft

Changed J2EE to Java EE and J2SE to Java SE.

Renamed EmbeddableSuperclass as MappedSuperclass.

Added hints to NamedQuery and NamedNativeQuery.

Required support for JOINED inheritance strategy.

Specified single generated Id column in compound Id column case (IdClass).
Added EntityManager.setFlushMode() method.

Updated Entity Packaging to remove .par files, to allow persistence units to be specified in EJB-JAR and
WAR files, and to allow multiple persistence units to be specified in a single persistence.xml file.

Renamed entity-mappings.xml to orm.xml.
Added EntityManager.clear() method.

EntityTransaction.rollback and EntityTransaction.isActive throw PersistenceException if an unexpected
error is encountered.

Renamed pkJoin element of SecondaryTable annotation to pkJoinColumns.
Split Id generation elements out from Id annotation and into GeneratedValue annotation.
Default value for a string discriminator type is the entity name.

Changed name of default discriminator column name to “DTYPE” to save use of “TYPE” for the appli-
cation.

251 5/2/06

Sun Microsystems, Inc.

Revision History

Enterprise JavaBeans 3.0, Final Release Changes Since Public Draft

Flattened nested Table element in JoinTable and TableGenerator annotations for consistency with Sec-
ondaryTable and better ease of use.

Added standard properties for use in createEntityManagerFactory.
Added transaction-type element to persistence.xml.
Added persistence.xml schema.

Generalized wording of extended persistence context propagation rules to handle transitive closure
cases.

Clarified that entity class, its methods, and its instance variables must not be final.

Removed requirement that EntityManagerFactory be Referenceable.

Added support for transformers in persistence provider pluggability contracts.

Added clarifications about use of HAVING in EJB QL.

Added clarifications about query results when multiple items are used in the SELECT clause.
Generalization of entity listeners to allow multiple listeners and default listeners; added ExcludeSuperc-
classListeners and ExcludeDefaultListeners annotations; changed EntityListener annotation to Enti-
tyListeners.

Added section on optimistic locking.

Added EntityManager.lock method and lock modes.

Renamed getTempClassLoader as getNewTempClassLoader.

Removed accessType element from annotations: required use of a single access type in an entity hierar-
chy; placement of the mapping annotations determines the access type in effect.

Renamed secondaryTable element of Column and JoinColumn annotations to table.

Clarified that EJB QL bulk updates do not update version columns nor synchronize the persistence con-
text with the results of the update/delete.

Replaced EntityNotFoundException with NoResultException in getSingleResult—results other than
entities might be returned, and exception should be recoverable.

Clarified that the exceptions thrown by getSingleResult do not cause the transaction to be rolled back.

Added clarifications about effect of rollback on persistence contexts, and what the application can count
on.

Refactorization of Inheritance and DiscriminatorColumn annotations.

5/2/06

252

Sun Microsystems, Inc.

Changes since Proposed Final Draft Enterprise JavaBeans 3.0, Final Release Revision History

A5

Allow GROUP BY to group over entities.

Added Enumerated annotation for mapping of enums.

Clarified that named queries are scoped to persisence unit.

Clarified join syntax to remove ambiguity with regard to combination of path expressions with out joins.
Allow setting of relationships in EJB QL update statements.

Fixed all_or_any_expression definition to be consistent with SQL.

Clarified how composite foreign keys in SQL query results can be mapped.

Fixed syntax of EJB QL comparison operations to allow aggregate functions in the HAVING cluase.

Allowed persist, merge, remove, refshed to be invoked in the absence of a transaction when an extended
persistence context is used.

Added getFlushMode method.

Removed FlushMode NEVER option.

Clarified that transaction must be active for flushing to occur.

UniqueConstraint annotation is now usable only within Table and SecondaryTable, not as on TYPE.
Remove Target(TYPE) from JoinColumns annotation—this isn’t needed.

Added ClassTransformer interface.

Updated orm.xml to reflect annotations.

Editorial sweep.

Changes since Proposed Final Draft

Corrected inconsistency in name of LockModeType enum.

Added missing SqlResultSetMappings annotation; removed METHOD target from SqglResultSetMap-
ping annotation.

Removed TYPE target from JoinColumn annotation.
Revised orm.xml schema.

Removed obsolete reference to table association from description of JoinColumn annotation.

253 5/2/06

Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Final Release Changes since Proposed Final Draft

Clarified that named parameters are case sensitive.

Clarified rules for use of enums in EJB QL.

Fixed bug in DiscriminatorColumn annotation name element default.
Added clarification about use of property access with lazy fetching.

Made simplifications to application-managed entity managers, and made application responsible for
managing persistence context lifecycle and transactions for application-managed entity managers.

Removed EntityManagerFactory.getEntityManager method.

Removed EntityManagerFactory.createEntityManager(PersistenceContextType type) method.

Added EntityManagerFactory.createEntityManager(Map map) method.

Added Map parameter to PersistenceProvider.createContainerEntityManagerFactory method.

Clarified runtime contracts between container and persistence provider.

Added EntityManager.joinTransaction method.

Added EntityManager.getDelegate method.

Removed unused FlushMode annotation.

Clarified optionality of unitName element of PersistenceContext and PersistenceUnit annotations.
Added PersistenceProperties elements to PersistenceContext annotation, and added PersistenceProperty
annotation to support this. Entries in this element are passed by the container into the createEntityMan-
ager method.

Clarified that entity managers are not thread-safe, but entity manager factories are.

Added AssociationOverride and AssociationOverrides annotations to handle the overriding of relation-
ship mappings.

Updated orm.xml to reflect annotation changes; added xml-mapping-metadata-complete element and
metadata-complete attributes to orm.xml.

Added METHOD, FIELD to Target of PrimaryKeyJoinColumns annotation.
Clarifications to AUTO GenerationType strategy for GeneratedValue annotation.

Allowed EntityManager.close to be called within a transaction; the persistence provider closes the entity
manager after the transaction completes.

Clarified usage of Temporal annotation.

5/2/06 254

Sun Microsystems, Inc.

Changes since Proposed Final Draft Enterprise JavaBeans 3.0, Final Release Revision History

Clarified that the value of the CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP func-
tions is that on the database server.

Added missing identification_variable to groupby_item.
Updated section on binding of entity listeners to conform with XML.
Allowed entity listeners to be defined on mapped superclasses.

Added EntityTransaction setRollbackOnly and getRollbackOnly methods; clarified persistence provider
requirements for EntityTransaction.

Clarified requirements for handling of detached entities when lazy loading is used.

Initial value for sequence generator changed to 1.

Added EntityExistsException.

Added rules clarifying how ORM mapping files override annotations.

Transient annotation is also applicable within mapped superclasses and embeddable classes.

Query language references updated to refer to Java Persistence query language.

Clarifications to XML overriding rules for persistence-unit-defaults (schema, catalog, access, cas-
cade-persist); entity-mappings (package, access); entity (metadata-complete, access, name);
mapped-superclass (metadata-complete, access), embeddable (metadata-complete, access)

Change persistent-unit-transaction-type to persistence-unit-transaction-type in persistence.xsd.
Clarified meaning of initialValue element of TableGenerator.

Clarified that enums and interfaces should not be designated as entities.

Clarified that a non-entity class may not be an embeddable class or id class.

Clarified that calling persist on a detached entity may cause EntityExistsException to be thrown.
Clarified scope of temporary classloader used by persistence provider.

Clarified urls returned by getJarFileUrls and getPersistenceUnitRootUrl.

Clarified responsibilities of the container and persistence provider to validate XML files.

Clarified that vendors should use vendor-specific namespaces for property names.

FieldResult element of SglResultSetMapping can be used for embedded primary keys with dot notation.

Clarified that NamedQuery and NamedNativeQuery annotations can be applied to entities or mapped
superclasses.

255 5/2/06

Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Final Release Changes since Proposed Final Draft

Updated examples.

5/2/06 256

	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 Requirements on the Entity Class
	2.1.1 Persistent Fields and Properties
	2.1.2 Example
	2.1.3 Entity Instance Creation
	2.1.4 Primary Keys and Entity Identity
	2.1.5 Embeddable Classes
	2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
	2.1.7 Entity Relationships
	2.1.8 Relationship Mapping Defaults
	2.1.8.1 Bidirectional OneToOne Relationships
	2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
	2.1.8.3 Unidirectional Single-Valued Relationships
	2.1.8.3.1 Unidirectional OneToOne Relationships
	2.1.8.3.2 Unidirectional ManyToOne Relationships

	2.1.8.4 Bidirectional ManyToMany Relationships
	2.1.8.5 Unidirectional Multi-Valued Relationships
	2.1.8.5.1 Unidirectional OneToMany Relationships
	2.1.8.5.2 Unidirectional ManyToMany Relationships

	2.1.9 Inheritance
	2.1.9.1 Abstract Entity Classes
	2.1.9.2 Mapped Superclasses
	2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy

	2.1.10 Inheritance Mapping Strategies
	2.1.10.1 Single Table per Class Hierarchy Strategy
	2.1.10.2 Table per Concrete Class Strategy
	2.1.10.3 Joined Subclass Strategy

	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Persisting an Entity Instance
	3.2.2 Removal
	3.2.3 Synchronization to the Database
	3.2.4 Detached Entities
	3.2.4.1 Merging Detached Entity State
	3.2.4.2 Detached Entities and Lazy Loading

	3.2.5 Managed Instances

	3.3 Persistence Context Lifetime
	3.3.1 Transaction Commit
	3.3.2 Transaction Rollback

	3.4 Optimistic Locking and Concurrency
	3.4.1 Optimistic Locking
	3.4.2 Version Attributes
	3.4.3 Lock Modes
	3.4.4 OptimisticLockException

	3.5 Entity Listeners and Callback Methods
	3.5.1 Lifecycle Callback Methods
	3.5.2 Semantics of the Life Cycle Callback Methods for Entities
	3.5.3 Example
	3.5.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
	3.5.5 Example
	3.5.6 Exceptions
	3.5.7 Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
	3.5.7.1 Specification of Callback Listeners
	3.5.7.2 Specification of the Binding of Entity Listener Classes to Entities

	3.6 Query API
	3.6.1 Query Interface
	3.6.1.1 Example

	3.6.2 Queries and FlushMode
	3.6.3 Named Parameters
	3.6.4 Named Queries
	3.6.5 Polymorphic Queries
	3.6.6 SQL Queries

	3.7 Summary of Exceptions

	Chapter 4 Query Language
	4.1 Overview
	4.2 Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 FROM Clause and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Between Expressions
	4.6.8 In Expressions
	4.6.9 Like Expressions
	4.6.10 Null Comparison Expressions
	4.6.11 Empty Collection Comparison Expressions
	4.6.12 Collection Member Expressions
	4.6.13 Exists Expressions
	4.6.14 All or Any Expressions
	4.6.15 Subqueries
	4.6.16 Functional Expressions
	4.6.16.1 String Functions
	4.6.16.2 Arithmetic Functions
	4.6.16.3 Datetime Functions

	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Result Type of the SELECT Clause
	4.8.2 Constructor Expressions in the SELECT Clause
	4.8.3 Null Values in the Query Result
	4.8.4 Aggregate Functions in the SELECT Clause
	4.8.4.1 Examples

	4.9 ORDER BY Clause
	4.10 Bulk Update and Delete Operations
	4.11 Null Values
	4.12 Equality and Comparison Semantics
	4.13 Examples
	4.13.1 Simple Queries
	4.13.2 Queries with Relationships
	4.13.3 Queries Using Input Parameters

	4.14 BNF

	Chapter 5 Entity Managers and Persistence Contexts
	5.1 Persistence Contexts
	5.2 Obtaining an EntityManager
	5.2.1 Obtaining an Entity Manager in the Java EE Environment
	5.2.2 Obtaining an Application-managed Entity Manager

	5.3 Obtaining an Entity Manager Factory
	5.3.1 Obtaining an Entity Manager Factory in a Java EE Container
	5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment

	5.4 The EntityManagerFactory Interface
	5.5 Controlling Transactions
	5.5.1 JTA EntityManagers
	5.5.2 Resource-local EntityManagers
	5.5.2.1 The EntityTransaction Interface

	5.5.3 Example

	5.6 Container-managed Persistence Contexts
	5.6.1 Container-managed Transaction-scoped Persistence Context
	5.6.2 Container-managed Extended Persistence Context
	5.6.2.1 Inheritance of Extended Persistence Context

	5.6.3 Persistence Context Propagation
	5.6.3.1 Requirements for Persistence Context Propagation

	5.6.4 Examples
	5.6.4.1 Container-managed Transaction-scoped Persistence Context
	5.6.4.2 Container-managed Extended Persistence Context

	5.7 Application-managed Persistence Contexts
	5.7.1 Examples
	5.7.1.1 Application-managed Persistence Context used in Stateless Session Bean
	5.7.1.2 Application-managed Persistence Context used in Stateless Session Bean
	5.7.1.3 Application-managed Persistence Context used in Stateful Session Bean
	5.7.1.4 Application-managed Persistence Context with Resource Transaction

	5.8 Requirements on the Container
	5.8.1 Application-managed Persistence Contexts
	5.8.2 Container Managed Persistence Contexts

	5.9 Runtime Contracts between the Container and Persistence Provider
	5.9.1 Container Responsibilities
	5.9.2 Provider Responsibilities

	Chapter 6 Entity Packaging
	6.1 Persistence Unit
	6.2 Persistence Unit Packaging
	6.2.1 persistence.xml file
	6.2.1.1 name
	6.2.1.2 transaction-type
	6.2.1.3 description
	6.2.1.4 provider
	6.2.1.5 jta-data-source, non-jta-data-source
	6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes
	6.2.1.7 properties
	6.2.1.8 Examples

	6.2.2 Persistence Unit Scope

	6.3 persistence.xml Schema

	Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping
	7.1 Java EE Deployment
	7.1.1 Responsibilities of the Container
	7.1.2 Responsibilities of the Persistence Provider
	7.1.3 javax.persistence.spi.PersistenceProvider
	7.1.3.1 Persistence Unit Properties

	7.1.4 javax.persistence.spi.PersistenceUnitInfo Interface

	7.2 Bootstrapping in Java SE Environments
	7.2.1 javax.persistence.Persistence Class

	Chapter 8 Metadata Annotations
	8.1 Entity
	8.2 Callback Annotations
	8.3 Annotations for Queries
	8.3.1 NamedQuery Annotation
	8.3.2 NamedNativeQuery Annotation
	8.3.3 Annotations for SQL Query Result Set Mappings

	8.4 References to EntityManager and EntityManagerFactory
	8.4.1 PersistenceContext Annotation
	8.4.2 PersistenceUnit Annotation

	Chapter 9 Metadata for Object/Relational Mapping
	9.1 Annotations for Object/Relational Mapping
	9.1.1 Table Annotation
	9.1.2 SecondaryTable Annotation
	9.1.3 SecondaryTables Annotation
	9.1.4 UniqueConstraint Annotation
	9.1.5 Column Annotation
	9.1.6 JoinColumn Annotation
	9.1.7 JoinColumns Annotation
	9.1.8 Id Annotation
	9.1.9 GeneratedValue Annotation
	9.1.10 AttributeOverride Annotation
	9.1.11 AttributeOverrides Annotation
	9.1.12 AssociationOverride Annotation
	9.1.13 AssociationOverrides Annotation
	9.1.14 EmbeddedId Annotation
	9.1.15 IdClass Annotation
	9.1.16 Transient Annotation
	9.1.17 Version Annotation
	9.1.18 Basic Annotation
	9.1.19 Lob Annotation
	9.1.20 Temporal Annotation
	9.1.21 Enumerated Annotation
	9.1.22 ManyToOne Annotation
	9.1.23 OneToOne Annotation
	9.1.24 OneToMany Annotation
	9.1.25 JoinTable Annotation
	9.1.26 ManyToMany Annotation
	9.1.27 MapKey Annotation
	9.1.28 OrderBy Annotation
	9.1.29 Inheritance Annotation
	9.1.30 DiscriminatorColumn Annotation
	9.1.31 DiscriminatorValue Annotation
	9.1.32 PrimaryKeyJoinColumn Annotation
	9.1.33 PrimaryKeyJoinColumns Annotation
	9.1.34 Embeddable Annotation
	9.1.35 Embedded Annotation
	9.1.36 MappedSuperclass Annotation
	9.1.37 SequenceGenerator Annotation
	9.1.38 TableGenerator Annotation

	9.2 Examples of the Application of Annotations for Object/Relational Mapping
	9.2.1 Examples of Simple Mappings
	9.2.2 A More Complex Example

	Chapter 10 XML Descriptor
	10.1 XML Overriding Rules
	10.1.1 persistence-unit-defaults Subelements
	10.1.1.1 schema
	10.1.1.2 catalog
	10.1.1.3 access
	10.1.1.4 cascade-persist
	10.1.1.5 entity-listeners

	10.1.2 Other Subelements of the entity-mappings element
	10.1.2.1 package
	10.1.2.2 schema
	10.1.2.3 catalog
	10.1.2.4 access
	10.1.2.5 sequence-generator
	10.1.2.6 table-generator
	10.1.2.7 named-query
	10.1.2.8 named-native-query
	10.1.2.9 sql-result-set-mapping
	10.1.2.10 entity
	10.1.2.11 mapped-superclass
	10.1.2.12 embeddable

	10.1.3 entity Subelements and Attributes
	10.1.3.1 metadata-complete
	10.1.3.2 access
	10.1.3.3 name
	10.1.3.4 table
	10.1.3.5 secondary-table
	10.1.3.6 primary-key-join-column
	10.1.3.7 id-class
	10.1.3.8 inheritance
	10.1.3.9 discriminator-value
	10.1.3.10 discriminator-column
	10.1.3.11 sequence-generator
	10.1.3.12 table-generator
	10.1.3.13 attribute-override
	10.1.3.14 association-override
	10.1.3.15 named-query
	10.1.3.16 named-native-query
	10.1.3.17 sql-result-set-mapping
	10.1.3.18 exclude-default-listeners
	10.1.3.19 exclude-superclass-listeners
	10.1.3.20 entity-listeners
	10.1.3.21 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	10.1.3.22 id
	10.1.3.23 embedded-id
	10.1.3.24 basic
	10.1.3.25 version
	10.1.3.26 many-to-one
	10.1.3.27 one-to-many
	10.1.3.28 one-to-one
	10.1.3.29 many-to-many
	10.1.3.30 embedded
	10.1.3.31 transient

	10.1.4 mapped-superclass Subelements and Attributes
	10.1.4.1 metadata-complete
	10.1.4.2 access
	10.1.4.3 id-class
	10.1.4.4 exclude-default-listeners
	10.1.4.5 exclude-superclass-listeners
	10.1.4.6 entity-listeners
	10.1.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	10.1.4.8 id
	10.1.4.9 embedded-id
	10.1.4.10 basic
	10.1.4.11 version
	10.1.4.12 many-to-one
	10.1.4.13 one-to-many
	10.1.4.14 one-to-one
	10.1.4.15 many-to-many
	10.1.4.16 embedded
	10.1.4.17 transient

	10.1.5 embeddable Subelements and Attributes
	10.1.5.1 metadata-complete
	10.1.5.2 access
	10.1.5.3 basic
	10.1.5.4 transient

	10.2 XML Schema

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Changes Since EDR 2
	A.4 Changes Since Public Draft
	A.5 Changes since Proposed Final Draft

