—

Patricia Seybold Group,

Strategic Technologies, Best Practices, Business Solutions '

Java™ 2 Platform,

Enterprise Edition

Ensuring Consistency, Portability, and
Interoperability

By Anne Thomas
June 1999

Prepared for Sun Microsystems

85 Devonshire Street, 5* Floor, Boston, MA 02109 * Phone 617.742.5200 * Fax 617.742.1028 www.psgroup.come

Table of Contents

Executive SUMMATYccoooiiiiiiiiiiiiiiii e 1
Java 2 Platform, Enterprise Edition........cccoviiiiiiiiiniiiiiiiccecceee 2
J2EE Platform: Supporting Electronic Businessccccccevevevieciniinincniecninenne. 2
Overview of the Java Platformsooveiieiiiiiiiecceeeee e 5
J2EE ATCRITECTUTE ittt ettt sse e 7
Platform SPECfiCs ..c..cuvruiriiriiiiieiieteetee e 10
Competitive LandScapecocivuirieiiiriniiniciiiieeceee s 11
CONCIUSIONS ...t 14

lllustrations and Tables

[lustration 1. J2EE Multitier EnvIronmentc.c.cocvvieviiiiiiiiieeciec e 4
[lustration 2. J2EE ArchiteCtureccviiiiiiiiiiiiceieeciee e 8
Table 1. Enterprise Java APISccooiiiiiiiiiiiiiciccceeee e 5
Table 2. Requirements of J2EE Runtime Environmentsccccceeevecincncincnenns 11
Table 3. Windows DNA and J2EE ..ot 13

Patricia Seybold Group © 1999 i

Java™ 2 Platform, Enterprise
Edition

Ensuring Consistency, Portability, and Interoperability

By Anne Thomas
Prepared for Sun Microsystems

Executive Summary

Supporting
Enterprise
Computing

E-Commerce
Requirements

Multitier
Distributed
Object
Architecture

Enterprise Java
APIs

Sun Microsystems” Java™ 2 platform, Enterprise Edition (J2EE) defines a Java
platform that is geared specifically to support the rigorous requirements of enterprise
computing. The term “enterprise” implies extremely robust computing. Enterprise
applications support core business operations, and any failure of these applications
causes an interruption in business operations.

The Internet has added a significant level of complexity to enterprise applications,
which must now support all business operations, including those conducted with
external business partners and customers. In other words, these applications must
support business-to-business and business-to-consumer electronic commerce. The
definitive characteristics of this new class of enterprise applications are scalability,
availability, reliability, security, transactional integrity, and distribution.

To support this robust level of service, enterprise applications are often designed
using a multitier, distributed object architecture. A multitier application is
implemented as a set of server-side application components. This type of application
can be distributed across multiple physical systems, enabling unmatched scalability
characteristics. It can also support any type of thin-client interface. These multitier
applications rely on a variety of middleware services, such as naming, security,
transactions, messaging, and databases.

On April 12, 1997, Sun announced an initiative to develop the Java Platform for the
Enterprise. Using the open Java Community Process, Sun fostered the development
of a collection of standard Java extensions known as the Enterprise Java™ APIs.
These application-programming interfaces (APIs) provide vendor-independent
programming interfaces for a variety of middleware implementations. The keystone
of the Enterprise Java APIs is the Enterprise JavaBeans™ API, which defines a server-
side component model and a vendor-independent programming interface for Java
application servers.

Patricia Seybold Group © 1999 1

Java™ 2 Platform, Enterprise Edition

J2EE Platform

Two years later, the specifications for the Enterprise Java APIs are complete, and
many vendor implementations are available. In particular, Enterprise JavaBeans
(EJB) has become the de facto standard component model for Java application
servers. There are more than twenty EJB implementations available. But E]JB by itself
isn’t enough to guarantee portability, interoperability, and platform consistency. EJB
defines a comprehensive programming model and a standard API, but it does not
specify implementation details such as communications and transaction protocols.
Meanwhile, the Enterprise Java APIs are still classified as standard extensions to the
Java platform. Because they are extensions, there’s no guarantee that the APIs will be
installed on a specific system. By defining an enterprise platform, Sun provides a
mechanism to certify that a system supports a complete Java environment that
contains the Enterprise Java APIs based on interoperable protocols. A certified J2EE
platform provides a consistent, integrated Java runtime environment that guarantees
a certain quality of service and ensures application portability and interoperability.

Java 2 Platform, Enterprise Edition

J2EE Platform: Supporting Electronic Business

Business Drivers

Electronic
Business

Increased
Complexity

As we approach the new millennium, businesses are faced with ever-increasing
competition. Every business has to figure out new ways to produce better products in
less time and at less cost, to devise better ways to attract and retain customers, and to
find better ways to adapt its products and services as fast as possible to maintain a
competitive edge.

In response, many companies are turning to electronic business solutions. Electronic
business can open up new channels to increase revenues. Business-to-business e-
commerce can streamline supply chains to improve efficiency. Self-service customer
care systems can increase customer loyalty while dramatically reducing costs.

But electronic business also adds a significant level of complexity to enterprise
information systems. Enterprise application systems now need to reach out well
beyond the confines of the traditional corporation. Companies must begin to
integrate their internal systems with those of their partners, suppliers, and
distributors. Customers now expect to be able to use the Internet to place and track
orders, report problems, and manipulate account information. The Internet places
much more challenging requirements on these systems, including:

* Scalability. The Internet is huge. In the past, enterprises needed to support
hundreds to perhaps thousands of concurrent users. Now they must design
systems that can support hundreds of thousands to perhaps millions of
concurrent users.

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

Supporting New
Types of Clients

Java 2 Platform,
Enterprise
Edition

Enterprise
JavaBeans

E)B Application
Servers

Simplifying
Development

* Availability. The Internet never goes to sleep. Enterprise application systems
now have to be continuously available. System managers no longer have the
luxury of doing maintenance during scheduled downtime.

* Security. The Internet has no walls. An enterprise can no longer rely on physical
boundaries to protect systems and data. Anyone on the Internet can potentially
infiltrate the enterprise application systems. Enterprise computing on the
Internet requires different methods to identify and authenticate users, guard
against unauthorized use of the systems, and protect the integrity of the data.
Enterprise applications must also protect the privacy of individuals and
customers.

In addition to supporting the Internet, many businesses are finding new ways to
increase revenues, reduce costs, and increase efficiency by extending the reach of
enterprise applications to new types of clients. Wireless and satellite communications
are seeping into the mainstream. Enterprise systems can directly communicate with
the computers embedded in a variety of electronic devices, such as mobile phones,
pagers, personal data assistants (PDAs), gas pumps, vending machines, well heads,
and utility meters.

The Java 2 platform, Enterprise Edition is designed to support the rigorous
requirements of modern, extended, e-business-oriented, enterprise application
systems. J2EE provides a component-based, server-centric, multitier application
architecture. [llustration 1 provides an overview of the J2EE environment.

Enterprise JavaBeans (EJB) technology forms the foundation for the J2EE platform.
It defines a model for developing and deploying reusable Java server components,
and it defines a standard programming interface for Java application servers.

EJB components execute within a Java application server, which provides a mission-
critical runtime environment that can support any type of client device. An
application server combines traditional OLTP technologies with new distributed
object technologies to provide a high-performance, highly scalable, robust execution
environment. An application server simplifies the development of scalable, server-
based application systems by automatically managing and recycling expensive system
resources. Examples of such system resources include operating system processes,
threads, memory, database connections, and network sessions. All of these are very
expensive to create, so, for optimal performance, an application server creates these
resources once and then saves and recycles them for subsequent requests.

EJB technology also provides an integrated application framework that dramatically
simplifies the process of developing enterprise-class application systems. An EJB
server automatically manages a number of tricky middleware services, such as
transactions, state, persistence, and security, on behalf of the application
components. EJB component builders can concentrate on writing business logic

Patricia Seybold Group © 1999 3

Java™ 2 Platform, Enterprise Edition

rather than complex middleware. As a result, applications get developed more
quickly, and the code is of better quality.

J2EE Multitier Environment

| |
| |
|
Client l o ! EIS Systems
\{\ Application Server !
|
| |
|
Client ! | RDBMS
TN sl ey
oo i ERP
\ ' |
Client : » \Web Server EB !
|
| e > :
' = e8]
| EJB I
Client | HTML !
L XML l
|
Client . |
I ! [
1 } Enterprise Java Services i
Firewal | JINDI, JDBC, JTA, JavaMail, IMS, RMI/IIOP !
|
| |
| |
__ 1
Client Tier Middle Tier DataTier

Hlustration 1. J2EE provides a component-based, e-business-oriented, multitier application architecture.

Enterprise Java
APIs

Servlets and JSP

Enterprise applications require access to a variety of distributed middleware services,
such as naming, security, transactions, messaging, and database. The Enterprise Java
APIs, which are available as Java Standard Extensions, provide access to these
middleware services. These APIs are designed to layer on multivendor, heterogeneous
infrastructure services. Each API provides a common programming interface to a
generic type of infrastructure service. Table 1 provides an overview of the Enterprise

Java APIs.

E-business requirements demand that modern enterprise applications be accessible to
users across the Internet. J2EE fully supports Web clients using servlet and JavaServer
Pages™ (JSP) technology. Servlets and JSP are server components that normally run
within a Web server. Servlets are written as Web server extensions (i.e., separate from
the HTML page), while JSP embeds the Java code directly in HTML. At
deployment time, the JSP Java code is automatically converted into a servlet. Servlets
process Web requests, pass them into the back-end enterprise application systems,
and dynamically render the results as HTML or XML client interfaces. Servlets also

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

manage the browser user’s session information, so that users don’t need to repeatedly
input the same information.

Enterprise Java APlIs

API Description

EJB Enterprise JavaBeans is a server component model that provides portability across application
servers and implements automatic services on behalf of the application components.

JNDI Java Naming and Directory Interface provides access to naming and directory services such as
DNS, NDS, LDAP, and CORBA Naming.

RMI/IIOP Remote Method Invocation creates remote interfaces for Java-to-Java communications. This
extension uses the CORBA standard IIOP communications protocol.

Java IDL Java Interface Definition Language creates remote interfaces to support Java-to-CORBA
communications. Java IDL includes an IDL-to-Java compiler and a lightweight ORB that
supports IIOP. (Java IDL is part of the Java 2 platform, Standard Edition, formerly known as
the Java Development Kit.)

Servlets and JSP Java servlets and Java Server Pages are server components that run in a Web server that supports
dynamic HTML generation and session management for browser clients.

JMS Java Messaging Service supports asynchronous communications using either a reliable queuing
or publish and subscribe programming model.

JTA Java Transaction API provides a transaction demarcation API.

JTS Java Transaction Service defines a distributed transaction management service based on CORBA
Object Transaction Service.

JDBC™ JDBC Database Access API provides uniform access to relational databases such as DB2,
Informix, Oracle, SQL Server, and Sybase. (JDBC is part of the Java 2 platform, Standard
Edition.)

JavaMail JavaMail provides a protocol independent framework to build mail and messaging applications.
(JavaMail requires the JAF APIL.)

JAF JavaBeans™ Activation Framework provides standard services to determine the type of an

arbitrary piece of data and activate an appropriate JavaBeans component to manipulate the data.

Table 1. An overview of the Enterprise Java APIs.

Overview of the Java Platforms

Java Technology

Java technology is a portable object-oriented programming environment. A Java
environment consists of the Java programming language, a Java language compiler,
and a Java virtual machine. The Java programming language consists of a number of
classes and interfaces that are used to write Java applications. A Java language
compiler compiles the programming language into a platform-independent

Patricia Seybold Group © 1999 5

Java™ 2 Platform, Enterprise Edition

WORA

Java APIs

Java Platform
Specifications

Java Compatible
Logo

Four Java
Platform
Specifications

executable called Java bytecode. Java bytecode executes in a Java virtual machine.
The Java virtual machine dynamically compiles or interprets the platform-
independent Java bytecode, translating it into platform-specific instructions.

The essence of Java technology is defined by the slogan “Write Once, Run
Anywhere™” (WORA). Any Java application can run in any Java virtual machine on
any platform, without modification. Java virtual machines are available for nearly
every computing platform—from the smallest smart cards to the largest
supercomputers.

The Java programming language consists of a collection of Java classes and interfaces.
Developers interact with these classes and interfaces through a set of specified
application programming interfaces. The Java APIs are distributed in a hierarchical
tree structure of class libraries. The primary Java APIs are packaged together in what
are called the Java Core Classes, which for the most part fall within the java.* class
hierarchy'. As the language has matured and the language requirements have
expanded, the industry has developed a number of additional Java APIs that are
referred to as Java Standard Extensions. These APIs generally fall within the javax.*
class hierarchy.

To ensure consistency across platforms and to achieve WORA portability, Sun has
defined a set of Java platform specifications. A Java platform specifies a minimum
Java configuration that must be supported in a given runtime environment to ensure
Java application portability. A platform specification defines exactly which Java APIs
must be supported by a Java virtual machine.

Sun ensures the integrity of the Java brand and the WORA message using platform
compatibility test suites and the Java Compatible logo. Sun supplies a Java platform
compatibility test suite that vendors use to test their products. Any Java platform
product that passes the compatibility test suite may display the Java Compatible logo.
The logo indicates that the product is certified to support the minimum Java
configuration as defined in the Java platform specification.

Since not all Java applications require the complete set of Java APILs, Sun has defined
four different Java platforms.

* Java 2, Standard Edition. Java 2 is the latest release of Java technology. Java 2,
Standard Edition (J2SE) defines the standard Java configuration required to
support Java applications on a general purpose computing system. A J2SE
platform includes complete support for the Java core classes APIs.

" The Java core classes also include the javax.accessibility, javax.swing.*, org.omg.CORBA.*, and
org.omg.CosNaming.* APIs.

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

J2EE Platform
Deliverables

J2EE Architecture

Server-Based
Computing

Java 2, Enterprise Edition. Java 2, Enterprise Edition is a superset of J2SE,
defining an extended Java configuration that supports enterprise-class application
systems. A J2EE platform includes the Java core classes APIs and a number of
Enterprise Java APIs.

PersonalJava. Personal]ava is a subset of the standard Java platform that is
designed to support the resource-constrained environment of an information
appliance.

Java Card. Java Card is a subset of the PersonalJava platform that defines the
minimal Java configuration required to support Java applications on a smart card.

According to standard Java technology practices, a Java platform must include a
platform specification, a compatibility test suite, and a reference implementation.
The J2EE platform also includes an application model to help developers build
applications on this platform. The J2EE platform is defined by the following
deliverables:

J2EE Platform Specification. The platform specification defines the specific
Java APIs that must be supported to guarantee the minimum quality of service.
The specification indicates the specific release levels of the Java APIs and
practices that will ensure compatibility, portability, and integration.

J2EE Compatibility Test Suite. A vendor uses the compatibility test suite to
verify that its implementation of the J2EE platform complies with the J2EE
platform specification.

J2EE Reference Implementation. The reference implementation is an
implementation of the J2EE platform specification. It provides an operational
definition of the J2EE platform, which can be used to demonstrate the
capabilities of the platform or to test J2EE applications.

J2EE Application Model. The application model provides guidance to help
developers build enterprise applications that can run in a J2EE platform. The
application model includes examples and describes a number of design patterns
that have proven to be successful for enterprise deployments.

J2EE relies on a server-based computing architecture. Server-based computing moves
the majority of application processing to a server or server cluster. Server-based
computing affords two critical advantages over other application architectures.

Multiple Clients. A server-based architecture requires a clean separation between
the client presentation layer and the server-based application-processing layer.
This approach allows a single application to simultaneously support any number

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

of different client interfaces, including rich GUI interfaces for corporate desktop
devices, interactive multimedia interfaces for high-speed browser-based users,
efficient text-based interfaces for low-speed browser-based users, landscape-
constrained interfaces for wireless PDA wusers, and interactive voice response
interfaces for telephone-based clients.

* Robust Operations. A server-based architecture supports unparalleled scalability,
reliability, availability, and recoverability. Server-based applications can be
partitioned and distributed across multiple processors. Application components
can be replicated to support instant failover and recovery.

J2EE A J2EE platform provides a prerequisite set of Java APIs and services to support

Architecture

enterprise applications. The complete platform can be implemented on a single

system, or the platform services can be distributed across a variety of systems, but all
specified APIs must be included somewhere within the total system. Illustration 2
shows an abstract overview of the architecture.

J2EE Architecture

Applet Container Servlet Container

Y
A

Applet < >\ ,: : <
pp HTTP JsP Servlet

RMI
I1OP

o Java
> Mail
JAF

IANC
IANC

dOI1/IINd
oadar

J2SE J2EE Server Core

EJB Container

EJB

o Java
> Mail
JAF

IANC
oaar

dOI11/INY

JEE Server/zé

™y

Hlustration 2. J2EE supports a component-based multitier application architecture. The environment supports
three types of application components: appless, servlets (including JSP), and Enterprise JavaBeans.

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

J2EE Server
Core

J2EE Service
APIs

Components

Component
Containers

Database

The J2EE server core is an application server environment that provides resource and
transaction management services. A J2EE platform vendor typically implements the
J2EE server core based on an existing transaction processing infrastructure. The J2EE
server core must include an implementation of the Java 2 Standard Edition Java
virtual machine and the Java development kit (J2SE), it must support the J2EE
Service APIs, and it must provide component containers for applets, servlets,
JavaServer Pages components, and EJB components.

The J2EE platform defines a set of standard services that each J2EE platform must
support. These standard services include the HTTP, JTA, RMI/IIOP, JavalDL,
JDBC, JNDI, JavaMail, and JAF APIs. Vendors can provide additional services, such

as JMS, or connectors to other non-J2EE application systems.

J2EE provides extensive support for components. Components are pre-developed
pieces of application code that can be assembled into working application systems.
Components are not standalone applications. They run within another application
environment called a container. A container provides an application context for one
or more components and provides management and control services for the
components. In practical terms, a container provides an operating system process or
thread in which to execute the component.

The J2EE architecture supports three different component types:

» Applets. Applets are mobile user interface components. They can be transported
across the Internet and executed in a Web browser or in other applet containers.
Applets require a container that supports J2SE, the applet programming model,
and JNDI.

* Servlets and JavaServer Pages. Servlets and JavaServer Pages are server
components that form a bridge between multiple clients and the back-end
application system. Servlets and JSP normally run in a Web server, managing
HTTP requests for services. The servlets and JSP process the requests and then
render the results in a form that can be consumed by the client (normally in
HTML or XML). Servlets and JSP require a container that supports J2SE, and
the servlet, JSP, JNDI, JTA, JavaMail, JAF, RMI/IIOP, and JDBC APIs.

* Enterprise JavaBeans. Enterprise JavaBeans (E]JB) are server components that
implement the back-end application services. EJB runs in an application server.
An EJB container must support J2SE, and the EJB, JNDI, JTA, JavaMail, JAF,
RMI/IIOP, and JDBC APIs.

The J2EE platform must include a database for the persistent storage of business
data. Applications and systems access the database using the JDBC API. Other types
of persistent data stores are permitted in addition to relational databases.

Patricia Seybold Group © 1999 9

Java™ 2 Platform, Enterprise Edition

Resource
Manager Drivers

Platform Specifics

Ensuring
Consistency and
Portability

Specific Release
Levels

Required Java
APls

Reference
Implementation

A J2EE platform must supply access to various external resources, such as databases
and external application systems. A resource manager driver is a system-level software
component that provides access to an external resource manager. A vendor can
implement a resource manager driver either by extending one of the J2EE standard
service APIs (e.g., building a JDBC driver) or by defining and implementing a new
API connector using the J2EE service provider interface (J2EE SPI). A driver that
uses the J2EE SPI to attach to the J2EE platform can work with all J2EE platform

implementations.

One of the primary goals of the J2EE platform is to establish a consistent
environment that can support application portability. Enterprise applications require
an extended set of products and services, many of which may come from different
vendors. When a user has to mix and match products from multiple vendors, the
project usually involves a fair amount of integration testing to ensure that the
products actually work together. But in a J2EE platform, components are certified to
work together, even if some of the platform components come from different
vendors. It’s the vendor’s responsibility to perform the integration testing and to
certify a complete platform.

To simplify the integration testing process, the J2EE specification defines the specific
release levels of the various Java APIs that must be used in the platform. The J2EE
vendor must support that specific version of the API, even if a newer release might be
available. The newer release may not be compatible with the rest of the platform.

The J2EE platform specification defines the specific Java APIs that must be included
in a Java runtime environment in order to qualify as a J2EE platform. The J2EE
platform supports three separate Java runtime environments—one for each of the
three supported J2EE component types. Table 2 identifies the runtime requirements
of the three environments.

Sun Microsystems will supply a reference implementation of the J2EE platform. The
reference implementation will consist of an implementation of an application server
that supports the required component models and implementations of the required
Enterprise APIs. The reference implementation will be a basic functional
environment that is designed to support evaluation and testing efforts rather than
production application systems. The reference implementation is not likely to
provide the high-performance and fault-tolerant capabilities that you could expect
from a vendor product. Rather, its intent is to provide a semantically correct
implementation of the specification.

10

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

Requirements of J2EE Runtime Environments

Standard Extension Applets Servlets E]Bs
J2SE 1.2 (includes Java IDL) Y Y Y
JDBC 2.0 N Y Y
RMI/TIOP 1.0 N Y Y
EJB 1.1 N N Y
Servlets 2.2 N Y N
JavaServer Pages 1.1 N Y N
JNDI 1.1 Y Y Y
JTA 1.0 N Y Y
JavaMail 1.1 N Y Y
JavaBeans Activation Framework 1.0 N Y Y

Table 2. Java APIs required by the J2EE runtime environments.

Vendor
Implementations

Numerous vendors will supply production-quality J2EE platforms. Potential vendors
include BEA Systems, Bluestone, GemStone, IBM, Inprise, Iona, Oracle, Persistence,
Sun/Netscape Alliance, and many others. Most vendor platforms will be centered on
an application server product. A single vendor is not required to supply all
components in a J2EE platform, but the vendor will identify any third-party
products that are required to complete the platform. It is the vendor’s responsibility
to certify that the complete package complies with the J2EE compatibility test suite.

Competitive Landscape

Two Possible
Contenders

CORBA

J2EE is an extremely comprehensive runtime environment that has garnered support
from most of the software industry. Very few vendors will produce platforms that
compete with J2EE. Rather than competing, most vendors are choosing to
implement a J2EE-compatible platform. J2EE has only two possible competitors:
CORBA and Microsoft.

The Object Management Group (OMG) has defined a comprehensive distributed
object infrastructure based on an object request broker (CORBA) and a set of
distributed object services (CORBAservices). OMG is in the process of defining a
server-side component model similar to EJB called CORBA Component Model
(CCM). Although the CORBA environment could be considered a competitor to
J2EE, it is actually much more complementary than competitive. All J2EE platforms
will be implemented using a CORBA foundation. J2EE uses CORBA’s standard
communication protocol, IIOP, which ensures interoperability with CORBA

Patricia Seybold Group © 1999 11

Java™ 2 Platform, Enterprise Edition

Microsoft
Windows DNA

Three
Component
Models

Differences

Vendor
Independence

Language
Independence

systems. And CCM is being defined as a language-independent superset of EJB. A
CCM-compatible application server will be able to host EJB components. More to
the point, all major CORBA vendors (BEA Systems, IBM, Inprise, and Iona) provide
EJB-compatible application servers and have endorsed J2EE. CORBA technology

represents more of an enabling infrastructure to J2EE than a competitor.

Microsoft is the only vendor to offer an enterprise application development platform
that competes head-to-head with J2EE. Windows Distributed interNet Applications
Architecture (Windows DNA) is an enterprise application development model for
the Windows platforms. As with J2EE, Windows DNA provides a distributed
computing infrastructure for the development of enterprise applications that support
the Internet and a wide range of client devices. Windows DNA is tightly integrated
with the Windows operating systems, and it relies on inherent Windows distributed
objects services, such as COM, Microsoft Transaction Server (MTS), the Distributed
Transaction Coordinator (DTC), the Windows Registry, and the Windows security
services. Windows DNA is based on a multitier application model that is similar to
the one used in J2EE. In fact, there are a lot of similarities between the two
platforms, as seen in Table 3.

Windows DNA supports three application component models: ActiveX, Active
Server Pages (ASP), and MTS components. These component models map one-to-
one to the component models used in J2EE. ActiveX components correspond to
applets. An ActiveX component can be transported across the Internet and executed
in a Web browser that supports ActiveX, such as Internet Explorer. Active Server
Pages correspond to servlets and JSP. An ASP runs in Microsoft Internet Information
Server (IIS) connecting Web clients to back-end applications. An ASP processes Web
requests and renders the results in HTML or XML. MTS components correspond to
EJB components. An MTS component runs in the MTS application server,
implementing the back-end application services.

Although the two enterprise application platforms are conceptually similar, there are
fundamental differences between Windows DNA and J2EE. These differences can be
summarized as vendor independence versus language independence.

J2EE is a vendor-independent platform. Consumers have a choice when selecting
development products, deployment products, or deployment platforms. J2EE
implementations will be available from a wide selection of vendors for a wide
selection of hardware and operating systems. Even after selecting a particular product
implementation, the consumer isn’t locked into that choice. J2EE applications are
portable from one vendor’s platform implementation to another’s. But there is a
limitation: J2EE applications must be implemented in Java.

Windows DNA is a language-independent platform. Consumers have a choice when
selecting the language and tools used to implement Windows DNA applications.
Windows DNA supports a wide variety of programming languages, such as Java,
C++, Visual Basic, Delphi, and PowerBuilder. But consumers don’t have a choice

12

Patricia Seybold Group © 1999

Java™ 2 Platform, Enterprise Edition

when it come to deployment products or deployment platforms. Windows DNA
applications must be deployed using IIS, MTS, DTC, and OLE DB. Windows
DNA server-side applications must be deployed on Windows NT (or, in the future,
Windows 2000). Web clients are strongly encouraged to use Internet Explorer
(especially if using ActiveX components). Non-Web clients must be deployed on a
Win32 platform (Windows CE, 95, 98, or NT).

Windows DNA and J2EE

Platform Service Windows DNA J2EE

Operating Systems Windows CE/95/98/NT Any operating system
(future: Windows 2000)

Browser Internet Explorer Any browser

Browser Components ActiveX components Applets

Web Server Internet Information Server Any Web server

Web Server Components

Active Server Pages

Servlets and JavaServer Pages

Application Server

Microsoft Transaction Server

Any EJB application server
(over 20 to choose from)

Server Components MTS components Enterprise JavaBeans
Communications Protocol DCOM IIorP
Database Access ADO and OLE DB JDBC and SQL]J

Transaction Management

Microsoft Distributed Transaction

Any transaction service through JTA

Coordinator
Security Microsoft security services Java security services
Directory Microsoft Registry (future: Active Any directory through JNDI

Directory)

Table 3. Comparison between Windows DNA and J2EE.

Integrated
Solutions

Prior to J2EE, Windows DNA offered another critical advantage: Windows DNA is
an integrated solution. Microsoft makes the effort to ensure that the various products
that make up the Windows DNA platform actually work together. Prior to J2EE,
when using Java to implement enterprise applications, the consumer was responsible
for integrating products from multiple vendors. But J2EE levels the playing field.
J2EE is also an integrated solution. The J2EE platform vendor does the work to test
and integrate the various products that make up the J2EE platform.

Patricia Seybold Group © 1999 13

Java™ 2 Platform, Enterprise Edition

Conclusions

Reduce Costs
and Time to
Market

Supporting
Enterprise-Class
Computing

Freedom of
Choice

Integrated
Services

Third-Party
Applications

Supporting E-
Business

Java technology is a highly productive programming environment that allows
development teams to produce application solutions more rapidly and at less cost.
J2EE brings these same benefits to the enterprise application development space.

J2EE defines a consistent Java environment that can support enterprise-class
computing requirements. Any application server environment that carries the J2EE
brand is certified to provide support for the critical enterprise services defined in the
platform. The consistency of the platform supplies a level of confidence to
organizations that are looking to implement enterprise applications using Java

technology.

Because J2EE is vendor-independent, consumers can choose platform
implementations from a wide variety of vendors. Vendors can differentiate their
products to support specific requirements, such as tight security, extreme scalability,
bulletproof reliability, complex data structures, heterogeneous transactions, legacy
integration, packaged application support, and ease-of-use. Consumers can select a
platform implementation that best fits their specific requirements.

Regardless of the vendor selected, the J2EE brand indicates that the platform services
are integrated and guaranteed to work together. Consumers are no longer responsible
for making numerous products from multiple vendors work together.

The J2EE brand indicates that the certified environment can support any application
that has been developed for the J2EE platform. Numerous third party vendors, such
as IBM, Integral Development, The Theory Center, Sanga International, and
Tradex, are building applications based on the EJB component model, and these
applications will require a J2EE deployment platform. The J2EE brand ensures
application portability across multiple vendor implementations.

The Internet is forcing many businesses to adopt a new approach when building
application systems. These new systems require a multitier distributed application
architecture based on a scalable, robust infrastructure. J2EE provides the kind of
solid, integrated platform that organizations need to tackle e-business.

14

Patricia Seybold Group © 1999

